CONTENTS

List of contributors ix
Preface xiii
Introduction xv

1 Cholinergic neurons in Huntington’s disease 1
 K. G. Lloyd and C. J. Carter
 1.1 Introduction 1
 1.2 Central cholinergic synapses in Huntington’s disease 2
 1.3 Clinical pharmacology of central cholinergic synapses in Huntington’s disease 7
 1.4 The validity of the kainic acid model of Huntington’s disease with respect to cholinergic neurons 14
 1.5 Conclusions 16
 References 18

2 GABA deficiency in Huntington’s disease 25
 Thomas L. Perry
 2.1 Introduction 25
 2.2 GABA deficiency 25
 2.3 Other neurochemical changes in HD 29
 2.4 Cerebrospinal fluid GABA in HD 29
 2.5 Alterations in brain GABA content in other disorders 31
 2.6 GABA replacement therapy in HD 32
 2.7 Possible effects of elevated brain GABA 35
 2.8 What causes neuronal death in HD? Possible specific neurotoxins 36
 2.9 Summary 38
 References 39

3 The role of central dopamine in movement disorders 44
 Menek Goldstein and Emanuel Meller
 3.1 Introduction 44
vi Contents

3.2 Monkeys with unilateral surgical VMT lesions of the brain stem as a model for Parkinson’s disease 45
3.3 Possible molecular mechanisms underlying the action of partial dopamine agonists 46
3.4 Receptor reserve at presynaptic dopamine receptors 47
3.5 Monkeys with surgical unilateral VMT lesions of the brain stem as a model for Lesch-Nyhan syndrome 48
3.6 Discussion 49
 References 50

4 Tardive dyskinesia – a historical review 52
 Caroline M. Tanner and Harold L. Klawans

4.1 Introduction 52
4.2 Early clinical descriptions 52
4.3 Pharmacologic hypotheses 55
4.4 Animal studies 56
4.5 Recent clinical studies 58
 References 60

5 Gilles de la Tourette syndrome 64
 Jack W. Schweitzer and Arnold J. Friedhoff

5.1 Introduction 64
5.2 The dopaminergic system 65
5.3 The serotonergic system 69
5.4 The GABAergic system 69
5.5 The noradrenergic system 70
5.6 The cholinergic system 72
5.7 Animal models of Tourette syndrome 72
5.8 Conclusions 73
 References 74

6 Aluminium and Alzheimer’s disease 80
 D. R. Crapper McLachlan

6.1 Introduction 80
6.2 Alzheimer’s disease and altered gene expression: an hypothesis 81
6.3 Aluminium tolerance gene hypothesis 83
6.4 Aluminium in Alzheimer’s disease 83
6.5 Neurotoxic effects of aluminium 85
6.6 Aluminium concentration and neurotoxicity 90
6.7 Conclusions and future directions 91
 References 92
Contents

7 Cortical neurotransmitter receptors: distribution and involvement in Alzheimer's disease 98
 E. K. Perry and J. M. Candy
 7.1 Introduction 98
 7.2 Distribution of neurotransmitter receptors in the cerebral cortex 99
 7.3 Status of cortical neurotransmitter receptors in Alzheimer’s disease 104
 7.4 Future prospects 110
 References 113

8 Neurotransmitter receptors in normal human aging and Alzheimer’s disease 120
 David G. Morgan, Patrick C. May and Caleb E. Finch
 8.1 Introduction 120
 8.2 Considerations in experimental design 120
 8.3 Specific changes in receptor binding properties with normal aging and Alzheimer’s disease 131
 8.4 Future directions 137
 8.5 Conclusions 142
 References 143

9 Acetylcholine receptor in myasthenia gravis 148
 R. J. Boegman and K. K. Wan
 9.1 Introduction 148
 9.2 Acetylcholine receptor 149
 9.3 Acetylcholine receptor antibodies and experimental autoimmune myasthenia gravis 155
 9.4 Immunopathogenesis 159
 9.5 Therapy 160
 References 160

10 Receptor binding in the kindling model of epilepsy 171
 W. M. Burnham
 10.1 The kindling model of epilepsy 171
 10.2 Receptor binding in kindled brains 176
 10.3 Conclusions and prospective
 References 207

11 Imaging of regional cerebral metabolism and blood flow in epilepsy 211
 George J. Siegel, Bassel Abou-Khalil and J. Chris Sackellares
 11.1 Clinical features and classification of epilepsy 211
 11.2 Electrophysiology 211
 11.3 Histologic features 213
Contents

11.4 Brain metabolism and blood flow

11.5 LCMRG in partial seizures

11.6 Clinical use of the FDG PET scan in diagnosis of partial seizures

11.7 Primary generalized seizures

11.8 Oxygen-15 PET scan studies

11.9 Other blood flow studies

11.10 Conclusions

References

12 A review of the attentional deficit disorder of childhood

Lisa A. Raskin, Sally E. Shaywitz, Bennett A. Shaywitz, George M. Anderson, James F. Leckman and Donald J. Cohen

12.1 Introduction

12.2 Clinical studies

12.3 An animal model

References

13 Receptor studies in sleep and sleep disorders

Mortimer Mamelak

13.1 Introduction

13.2 Regulation of the sleep wakefulness cycle

13.3 Receptor and sleep disorders

References

14 Receptor localization in neuropsychiatry

James K. Wamsley and Ted M. Dawson

14.1 Introduction

14.2 Autoradiographic methods of receptor localization

14.3 Animal models

14.4 Studies of human postmortem tissues

14.5 Future directions

14.6 Conclusion

References

15 Brain tissue transplantation: applications to neurological research

Stephen B. Dunnett and Anders Björklund

15.1 Introduction

15.2 Application to CNS regeneration

15.3 Application to functional recovery

15.4 Application to the development of animal models

15.5 Potential application to clinical practice

References

Index