
1

A Primer on 
Machine  
Learning 
and Artificial 
Intelligence
Winok Lapidaire, Maryam Alsharqi,  
Andrew Fletcher, Paul Leeson

1

Artificial intelligence (AI) is a broad, non-technical term referring to intelligence exhibited 
by machines. Its applications range from facial recognition software, self-driving cars to 
fraud detection. A subfield of AI known as machine learning (ML) allows machines to learn 
progressively, without continuous human input on how to learn. It can identify patterns 
and learn rules for a specific goal, based on datasets that the machine has been provided 
with.1 ML methods developed for application within medicine are being used in clinical 
practice at an increasingly faster rate. To be able to use ML wisely in cardiovascular medi-
cine, a thorough understanding of the methodological strengths and limitations, as well as 
the opportunities and risks of ML clinical applications is required. This primer provides 
an overview of ML algorithms used in clinical cardiovascular applications, ML algorithm 
requirements and processes, and examples of ML applications in cardiovascular medicine 
and their integration into clinical care.

Machine learning terminology and techniques

Supervised learning
Machine learning algorithms can be broadly divided into supervised learning, unsuper-
vised learning, and reinforcement learning. Supervised learning algorithms use a dataset 
with known true values (labels) to learn to predict or classify a particular characteristic of 
interest. Labels can be categorical (e.g., ischemic, dilated, and hypertrophic cardiomyopa-
thies), or continuous (e.g., a chamber volume). Ideally this is an undisputed fact, gold-stan-
dard measurement or other “ground-truth,” rather than an indirect estimate or assumption. 
The algorithm learns underlying patterns to link them with the known labels,2-4 so that this 
can be applied to estimate the values for the characteristic of interest in unlabeled “testing 
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data.” Supervised learning algorithms can be in form of support vector machines, decision 
trees, and random forests. Support vector machines are a type of supervised algorithm that 
assigns datapoints to categories predefined by the labelled input data. It first maps exam-
ples from the labelled training data in a Oxford way that maximizes the distance between 
categories. For linear classification the training data space is two- dimensional, but for 
non-linear classification the training data space can be multidimensional.5 To estimate the 
outcome categories in unlabeled testing data, it assigns the testing data to the category that 
it lies relatively closest to in the training data space. Decision trees have internal nodes that 
split into branches or edges representing decisions towards a predicted outcome. When 
data goes through the tree, its path depends on the data values. Different combinations of 
values lead to a different path and different predicted outcome. The decisions are set up in 
a way where the labelled training input most often leads to the correct label in the output. 
Random forests methods create a multitude of decision trees. The data goes through all 
trees and each tree provides a class prediction. The model’s prediction is the outcome that 
is predicted by the most trees. Having multiple decision trees, trained on different parts of 
the same training data, reduces the variance, and improves performance.4 

Unsupervised learning
In unsupervised learning, the training dataset is not labeled, and the goal is to identify 
patterns in a dataset. Unsupervised learning algorithms can be in form of dimensionality 
reduction or clustering methods. Dimensionality reduction techniques, such as principal 
component analysis, are used to reduce the number of input variables whilst keeping as 
much of the variance contained in the raw data as possible. A principal component analy-
sis is a relatively simple dimensionality reduction tool. Dimensionality reduction is often 
performed before cluster analysis. Clustering methods, where training data is grouped 
by its similarity on a set of input parameters, are another form of unsupervised learning. 
However, clustering can also be performed in a supervised manner if it is based on known 
(labeled) groups. A combination of models can combine the benefits of supervised and 
unsupervised learning and reduce overfitting (ensemble learning). This can be done in dif-
ferent ways. In fact, different sets of training data can be created on which the same type 
of model is trained in parallel and weighed equally (bagging). This minimizes the variance 
(e.g., a random forest is an ensemble of individual decision trees). Many different types of 
models can be trained sequentially on the same dataset (boosting). Each model is weighted 
according to their performance and corrects the errors of the previous models. This reduces 
bias. Alternatively, several different models deliver their outputs to one final model which 
determines which model produces the lowest error (stacking).6 Reinforcement learning 
processes dynamic data and learns a set of rules by a process of trial and error. The data 
changes continuously and the algorithm deals with sequential decisions aiming to achieve 
a particular outcome.6

Deep learning
Deep learning refers to a collection of machine learning algorithms that can combine raw 
inputs into layers of intermediate features. Deep learning methods can combine supervised 
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and unsupervised learning. When sufficient labeled data is available, features tuned to a spe-
cific problem can be combined into a predictor. Deep neural networks are inspired by human 
brains. They have a series of hidden layers between the input (values in the dataset) and the 
output (predicted outcomes). Each layer is a mathematical manipulation that feeds into the 
next layer.7 The weights between nodes in the hidden layers act like the connections between 
neurons in the brain. A positive weight reflects an excitatory connection, while negative val-
ues mean inhibitory connections. All inputs are modified by a weight and summed. Deep neu-
ral networks can thereby analyse various aspects of the input data at different stages to pre-
dict the output. In the training stage, the weights are adjusted until it reaches the optimal set 
of weights that predicts the output data with the highest accuracy.8 Deep learning offers more 
flexibility than other ML approaches, but it needs larger training datasets (Table 1.I).2, 4, 6, 7, 9

Clinical applications
There are numerous ways in which ML can be applied to clinical tasks, covering all stages from 
raw-data acquisition to processing, analysis, diagnosis, prognosis, and treatment decisions.

Image processing
Precise measurements of anatomical structures such as arteries, veins and cardiac cham-
bers are required for the investigation of many cardiovascular conditions, for example the 
structure of the left ventricle in hypertrophic cardiomyopathy10 or the size of the aorta to 
detect an aneurysm.11 Segmentation, the process of extracting an outline of an anatomical 
structure, is a time-consuming process when performed manually by humans which often 
shows considerable inter-rater variability.12 Automation of segmentation with ML affords 
more rapid segmentation and precise quantification reducing inter-rater variability.13 In 
addition to these benefits, images can automatically be checked for image quality, and 
novel diagnostic parameters such as cardiac shape metrics can be extracted from images, 
and anatomical maps showing diagnostic characteristics spatially can be created.14

Diagnosis
Supervised machine learning approaches are frequently applied to develop diagnostic 
tools. Supervised ML algorithms can be trained on images, for example a chest X-ray15 or 
with a set of clinical parameters16 or a combination of both. If model training relies upon 
input data labelled by a human expert, as can occur in supervised ML, the model will likely 
produce similar mistakes, or have similar biases, as the expert.17 However, the diagnostic 
label may also be able to take into account information the clinician does not have access 
to at the time of diagnosis, for example longitudinal outcome data or a gold-standard test 
result. Theoretically this could improve diagnostic certainty of the ML model above that 
achievable by the clinician. For example, an invasive angiogram derived label concerning 
coronary artery lesions could be an appropriate label to train a ML coronary artery disease 
classifier based upon stress echocardiogram data.18 Clustering approaches are also used 
for diagnostic purposes by grouping people together based upon data similarities which 
represent phenotypic characteristics. When a patient fits in a cluster with a high disease 
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prevalence, they are more likely to have this disease.19 Similarly, clustering can be used to 
identify those with milder or more severe phenotypes of a condition.20

Table 1.I. Overview of machine learning methods that are frequently used for cardiovas-
cular clinical applications.

Method Description
Primary 
reference

Supervised 
learning 

Training data in which the conditions or events are 
labelled is used to train the model to classify or predict 
these labels.

6

Support vector 
machines 

Training examples are mapped onto points in space to 
maximize the distance between the two categories. New 
examples are mapped into that same space and predicted to 
belong to the category they are closest to. 

2

Decision trees 
(random forest)

Internal nodes split into branches representing decisions for 
which the training input most often leads to the correct label 
in the output. The predicted outcome is represented by the 
last branches of the tree that do not split any further (leaves or 
decisions).

6

Semi-supervised 
clustering 

Class-uniform clusters that have high probability densities of 
training data labels

9

Unsupervised 
learning

Uses data from unlabeled examples to identify groupings 
or outliers with no comparison to a predetermined or 
known outcome

4

Principal 
component 
analysis 

Reducing a large set of parameters into a low- dimensional 
representation by identifying the features that account for the 
most variation in a dataset.

2

Clustering Training data is grouped by its similarity on a set of traits 
while minimizing the distance between data points.

6

Ensemble 
learning 

Uses a combination of models in three different ways 
to optimize performance beyond that obtainable with a 
single model.

6

Reinforcement 
learning 

Processes dynamic, constantly changing data and, in 
responding to interactions with its environment, the model 
learns an optimized set of rules for achieving a goal or 
reward (or avoiding a penalty) by a process of trial and 
error.

6

Deep learning Collective term for neural networks reminiscent of human 
brain synapses.

7
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Prediction
ML models can not only be trained to detect whether a disease is currently present, 
but also whether a person is at risk of disease in the future. Prediction and risk strat-
ification models have been widely used in clinical practice to aid in the therapeutical 
decision-making process. Such models require a training dataset that has longitudinal 
follow-up information available. Knowing risk of future disease can help stratify those 
with higher risk of cardiovascular disease to receive earlier intervention.21 A ML method 
applied to predict cardiovascular events in >6800 asymptomatic individuals demon-
strated a superior performance to the traditional CAC risk score.22 When computational 
models are expanded to include information based on both current (diagnosis) and future 
(prognosis) heath status, treatments can be recommended based on a model-predicted 
projection of the pathways to restore health. This could be performed by using cluster-
ing analysis to predict a person’s disease pathway by looking at the known pathways of 
people in the same cluster or by creating a “digital twin:” an in-silico representation of a 
person based on their medical data. The digital twin has a real-time connection between 
the person’s medical data and the model. In combination with population representa-
tions, a digital twin would also allow for a simulation to predict which treatment option 
is the optimal choice.23 With increasing pressures on healthcare services due to ageing 
populations in many developed countries, chronic disease and hospitalization preven-
tion will become even more important.

Research
Computational models can identify the most important diagnostic data and reliably infer 
biomarkers that cannot be directly measured.23 For example, in deep neural networks, con-
nections with a higher weighting indicate that the information from the preceding nodes 
were most important for the task. Meanwhile in cluster analyses, the average values of a 
cluster on the principal components and the variables that are reflected in those princi-
pal components provide an indication of what original features were the most important. 
Knowing what phenotypical features are important for diagnosis and how these change 
over the clinical trajectory can be used to infer pathophysiological mechanisms. Based on 
phenotypical features, an unsupervised learning model has identified responders to car-
diac resynchronization therapy in patients with heart failure.24 Furthermore, models can 
reveal complex relationships between features that can lead to disease. Using ML methods 
for interpatient similarity analysis in cardiac structure and function a phenotypic map can 
be developed with specific characteristics and locations that differentiate cardiovascular 
disease stages and clinical outcomes.19

Structured reporting
To be able to use large amounts of clinical data from medical records that are historically 
or partly on paper, machine learning can help transcribe the paper records digitally.4 Even 
when records are digital, they cannot always be readily used for computational model-
ing. In clinical practice, important information is often recorded in free text information. 
Summarizing this information into codified form for computer processing would be a 
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time-consuming process for healthcare professionals. Fortunately, this can now largely be 
automated using natural language processing.1 A supervised deep neural network designed 
to predict in-hospital mortality in patients with cardiovascular disease using echocardiog-
raphy report data and ICD-10 codes provided more accurate prediction compared to the 
existing prediction models (Figure 1.1).25

Data

Data sources
Machine learning models need datasets of sufficient quality, detail, and size to “learn” suc-
cessfully. Big data is a term frequently coined to describe large amounts of collected data, 
often with high dimensionality. Medical health records are an important source of big data 
in medical research, as they contain both quantitative and qualitative data in numerical 
and textual formats from single encounters up to an entire lifetime. The benefits of this 
type of data are that it is already collected and therefore incurs less time, money, and effort 
to acquire than collecting new data. They also have the advantage of being real-world data, 
so can provide a more direct and relevant link between the research undertaken upon the 

Image processing

• Segmentation
• Quanti�cation
• Quality check
• Novel image-based

features

Cardiovascular
applications of

machine learning

Diagnosis

• Novel parameters
• Decision support or

automated
recommendation

Structured reporting

• Digitalising paper
records

• Codifing free text

Research

• Pathophysiological
mechanisms and
disease progression

• Therapeutic targets

Prediction

• Risk
• Prognosis
• Treatment response

Figure 1.1. Categories of machine learning applications.
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data and routine clinical practice. Since data is collected on every patient, there is less 
recruitment bias and therefore wider representation as compared to a research study with 
active recruitment. However, getting access to health records requires rigorous proce-
dures to make sure that patients cannot be identified from their data. Since the data is 
not collected for research purposes, getting it up to standard for research analysis can be 
difficult and time-consuming. There are variations in the types of equipment used, how 
the data is collected and recorded between medical centers and even between clinicians 
within each center. Furthermore, the extent of data that is available is strictly limited to 
what the clinician deemed necessary for clinical evaluation at the time it was recorded. 
These limitations are largely overcome by biobanks, where data is collected by a research 
program with a high level of standardization and quality control. Large, population wide 
biobanks such as the United Kingdom (UK) Biobank aim for a broad representation of the 
population. However, participation is still limited by inclusion criteria (e.g., age), cultural 
factors and participants’ willingness and ability to commit to the time and travel involved 
in participation.26 Biobanks offer a rich resource with which to train ML tools. Consortium 
studies are similar to biobanks in that they are a research program with predefined stan-
dardized data collection and quality control procedures, but often consist of research cen-
ters across multiple countries. Data from multiple studies can be collated into one database 
to create sufficient data with which to train ML tools. This approach requires fewer addi-
tional resources than collecting new data but has the limitation of variability between sites 
in terms of data acquisition, analysis, recording and formatting.

Missingness
In medical data, it is highly likely that some datapoints will be missing. This could be com-
pletely random (missing completely at random, MCAR) in which case a complete case 
analysis will not lead to biased results. If data is missing at random (MAR), the random 
probability of the missingness is dependent on the variables in the dataset and can be 
solved by re-weighting of the data. If data is missing not at random (MNAR), the missing-
ness depends on the missing variable itself or on other missing and unobserved variables.27 
It is very important to understand the reasons behind missingness as it can reflect infor-
mation and human biases. Ignoring missingness may lead to incorrect models that could 
potentially result in harmful predictions.27

Data sharing
ML is dependent on data and therefore data may need to be shared between health sys-
tems and those with the expertise to analyze the data such as computational scientists or 
biomedical engineers. Furthermore, data from multiple institutions may have to be shared 
to create datasets large enough to train and test ML algorithms. To protect the rights and 
identities of the people whose data is being shared, governments have set up legal data shar-
ing frameworks. The European Union has General Data Protection Regulations, and the 
United States of America (USA) has the Health Insurance Portability and Accountability 
Act. Research study proposals must go through ethics approval processes, where designated 
organizations check whether all ethical requirements are met. This includes whether the 
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identity of participants is sufficiently protected. This is becoming increasingly difficult due 
to the processing of larger volumes of data, where not every record can be double checked 
for complete anonymization, and due to better algorithms that can identify persons with 
increasingly less information. On the other hand, there is a push for sharing data freely. 
Some academic journals and funders now require the data used in a publication to be open 
access to promote reproducibility testing and transparency.1

Data preparation
The quality of any ML application depends on the quality of the training data. As previously 
discussed, this data needs to be of sufficient size and quality at the collection stage, but to 
further prevent inconsistencies and errors, the data needs to be cleaned and further pro-
cessed before it can be used. First, the data must be acquired using consistent methods of 
high standard and relevant parameters for the research question. Second, the data should 
be checked for missingness and data entry errors. When combining datasets from multiple 
studies or sites, extra care must be taken to ensure that there is no variability in data entry, 
for example in units (e.g., L and mL), or formulae used (e.g., different equations are avail-
able to calculate left ventricular mass).28 If many datapoints are missing in a parameter, the 
decision can be made to remove this parameter from the dataset. Datapoints may also be 
imputed if a complete dataset is required for the ML modeling, as is often the case.

Modeling

Algorithm choice
The research aims and the available data drive the choice of a suitable ML algorithm(s). A 
supervised algorithm such as a support vector machine or decision tree would be appro-
priate for image segmentation, diagnosis and prediction applications where labelled data 
are available and the so called “ground-truth” is known. Unsupervised methods are better 
for identifying phenotypes or novel data patterns and may be the only choice if the data is 
unlabeled.3 In other cases, a combination of algorithms may be required to train the model.

Performance metrics
Several metrics are commonly used in ML to assess model performance at the required task 
and to help drive the model training. Accuracy, the ratio between the correctly classified 
samples to the total number of samples, and error rate, the ratio of misclassified samples 
from both positive and negative classes to the total number of samples, are commonly used 
performance measures for supervised classification algorithms. Accuracy can be divided 
into sensitivity and specificity. Sensitivity, also called true positive rate, hit rate, or recall, 
reflects the proportion of the positive samples that were correctly classified. Specificity, 
otherwise known as true negative rate or inverse recall, represents the proportion of the 
negative samples that were correctly classified. The proportion of correctly classified pos-
itive samples to the total number of positive predicted samples is called the positive pre-
diction value or precision. The proportion of correctly classified negative samples to the 
total number of negative predicted samples is called the negative predictive value, inverse 
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