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Abstract This chapter summarizes currently available techniques for measuring

synchronization between neural sources identified through EEG and MEG record-

ings. First the evidence for the involvement of neural synchronization in the imple-

mentation of cognitive processes is described. This involvement is mainly through

the provision of high-quality communication between active brain regions, allow-

ing integration of processing activities through the exchange of information and

control signals. Second, we describe several useful techniques for obtaining phase

information from time series of EEG and MEG records, and measuring phase lock-

ing or phase coherence using these methods. These include wavelet analysis and

the analytic signal using the Hilbert transform for obtaining phase information, and

phase-locking value and coherence for obtaining useful indices of synchronization.

Finally, we summarize several available techniques for locating neural sources of

EEG and MEG records and describe the use of the phase-locking measurements

in ascertaining synchronization between sources located with these techniques. The

techniques include those involving blind separation of sources, such as indepen-

dent component analysis or principle component analysis, and those involving use

of brain anatomy to constrain source locations, such as beamformer or LORETA.

We also provide a few examples of published or forthcoming research that has used

these approaches. All of the techniques described are available either in commercial

software (such as BESA and MATLAB) or in freeware that runs in MATLAB (such

as EEGLAB, Fieldtrip, Brainstorm). Some custom programming might be required

(e.g., in MATLAB using the Signal Processing Toolbox) to implement some of the

measurements.
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1 Introduction: Oscillatory Synchronization and Dynamic

Functional Neural Assemblies

The brain oscillates and synchronization of these oscillations have been theoreti-

cally and empirically linked to the dynamic organization of communication in the

nervous system. Task-dependent neural synchronization is a general phenomenon.

It has been observed at various scales ranging from single unit recordings to large-

scale cortical dynamics, and has been associated with diverse functions including

motor activity, working memory, associative memory, attention, object recognition,

awareness, and perceptual organization (e.g., Schnitzler and Gross, 2005a; Tallon-

Baudry et al., 1998; Miltner et al., 1999; Rodriguez et al., 1999; Bhattacharya et al.,

2001; Doesburg et al., 2008; Burgess and Ali, 2002; Gruber et al., 2002). Moreover,

disturbance of oscillatory rhythms and decreased synchronization have been asso-

ciated with a wide ranging set of disorders including schizophrenia, Parkinson’s

disease, essential tremor, autism, dyslexia, and Alzheimer’s disease (Llinás et al.,

2005; Uhlhass and Singer, 2006; Schnitzler and Gross, 2005a). Given this evidence

of involvement with both normal and abnormal psychological processes, it is not

surprising that the study of oscillatory rhythms and their synchronization in the brain

is a subject of growing interest. This chapter briefly summarizes the history of the

field beginning with work performed using implanted electrodes and recordings

from the scalp. Various approaches to the estimation of the brain generators giving

rise to scalp activity, as well as how synchronization between those sources can be

calculated, also will be surveyed. Calculation of synchronization between neural

sources is a nascent field populated by several competing methods. We will dis-

cuss the strengths, weaknesses, and achievements of several of these approaches.

It is beyond the purview of this chapter to provide a complete guide to synchro-

nization analysis of EEG and MEG data. Instead, the chapter provides a guide for

the investigator interested in surveying the available options or the student wishing

an introductory overview. The chapter assumes a working knowledge of oscillation,

synchronization, and basic signal processing (e.g., Fourier analysis).

Neurons oscillate, cortical columns oscillate, and from such choruses emerge

large-scale oscillatory population dynamics reflecting the activity of millions of

cells. When two neurons (or two neural populations) oscillate synchronously, bursts

of action potentials can be consistently exchanged during the depolarized phase

of the target neuron’s ongoing membrane potential fluctuations, thereby increasing

fidelity of communication between these neurons (Fries, 2005). This mechanism

has been proposed as a means by which the brain is able to selectively integrate rel-

evant neural populations at each moment in order to construct dynamic functional

brain networks that perform various cognitive tasks, and/or to bind the spatially

distributed brain representations of features of percepts (Varela et al., 2001). The

first empirical evidence for this mechanism was the observation that gamma-band

oscillations recorded from cat primary visual cortex synchronize when columns

of neurons respond to a common object (Gray et al., 1989). It was subsequently

observed that the perception of coherent, integrated objects also involves gamma-

band synchronization across cortical regions (long-distance synchronization). This
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phenomenon expresses itself in EEG scalp recordings as synchronization between

electrodes associated both with recognition of a familiar object, and with the percep-

tion of a meaningful figure in an ambiguous stimulus (Engel et al., 1991b, a; Frein

et al., 1994; Gruber et al., 2002; Rodriguez et al., 1999). It is clear that selective

synchronization of relevant neural populations across long distances is a general

principle for organizing communication in the brain as it is also associated with

many cognitive processes (Ward, 2003; Jensen et al., 2007). To refer such phenom-

ena to a Hebbian frame, imagine that recurrently co-activated sets of connected

neurons form stable, distributed networks relevant for a particular representation or

function, and that when this constellation is ignited and integrated into a large-scale

assembly it embodies the perception or task performance at hand (i.e., Hebb, 1949).

Alternatively stated, the complex functions expressed by the brain require that par-

ticular sets of neural populations cooperate to perform a given task or to bind the

features of a percept. Given the manifold mental processes that characterize human

mental life, and the universe of perceptions of which we are capable, it must be the

case that functional connectivity in the brain can be quickly reorganized, emerging

from its constituent elements (Başar, 2006). Selective synchronization of oscilla-

tions between relevant neural populations provides a solution to this problem, as

synchronously oscillating neurons exchange information more effectively (Varela

et al., 2001; Fries, 2005).

2 Methods for the Analysis of Oscillatory Synchronization

Several different approaches have been employed for the calculation of synchroniza-

tion between oscillating signals. Most successfully employed among these are the

phase-locking value (PLV) approach, in which the phases of oscillators are obtained

using wavelet analysis or by calculating the analytic signal using the Hilbert trans-

form, and phase cross-coherence analysis. Such methods aim to identify the phases

of pairs of oscillators within a relatively narrow bandwidth of frequency, and to

assess synchronization between those oscillators by quantifying the stability of the

phase relationship between the two. The PLV and coherence techniques will be

reviewed here, as they constitute the core methods for the study of synchroniza-

tion between localized sources of brain activity. Alternative methods exist for the

analysis of synchronization, such as mutual information, Shannon entropy, and syn-

chronization likelihood. We shall focus our discussion here, however, on PLV and

phase cross-coherence analysis, as these have been most successfully employed in

EEG and MEG studies. An important decision lies in the choice of how one partners

a particular form of synchronization analysis with any of the numerous approaches

to source analysis, and successful marriages of such techniques will be discussed

later. It should also be noted that synchronization between EEG and MEG signals

draws upon a rich body of work addressing oscillatory synchronization as a general

concept for physical systems, and the aspiring investigator would be well served to

seek an understanding of such principles (e.g., Pikovski et al., 2001).
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2.1 Wavelet Analysis: Application to Phase-Locking Analysis

The most common method to obtain the phase of an oscillator for EEG and MEG

PLV analysis is wavelet analysis. Here, instead of decomposing a signal into cosine

waves with different phase offsets, as is done in Fourier analysis, the signal is

decomposed into various versions of a standard wavelet (a short section of a cosine

wave). The wavelet coefficients, which are the output of this analysis, represent the

similarity of a particular wavelet, usually the Morlet wavelet (which is the prod-

uct of a sinusoidal wave with a Gaussian or normal probability density) to the sig-

nal at various times and in various relevant frequency bands. In most applications

(e.g., Le Van Quyen et al., 2001) an EEG or MEG signal, h(t), is filtered into small

frequency ranges using a digital band-pass filter and then the wavelet coefficients,

Wh(τ, f ), which are complex numbers, are computed as a function of time, τ , and

center frequency of each band, f, from

Wh(τ, f ) =
∫ ∞

−∞
h(t) Ψ∗

τ, f (u) du (1)

where Ψ∗
τ, f (u) is the complex conjugate of the Morlet wavelet defined by

Ψτ, f (u) =
√

f ei2π f (u−τ ) e
− (u−τ )2

2σ2 (2)

The complex conjugate of a complex number z = x + iy is defined as z∗ =
x – iy. For a given time and frequency, Ψ∗

τ, f (u) is a function only of σ , the standard

deviation of the Gaussian density function (proportional to the inverse of f), which

determines how many cycles of the wavelet are to be used. The number of cycles,

nc = 6fσ . The frequency resolution of the analysis, i.e., the frequency range for

which the phase is measured, is determined by σ because the range of frequencies

analyzed is about from f – 4f/nc to f + 4f/nc. For 40 Hz, for example, the frequency

range would be from 20 to 60 Hz for nc = 8. This is in spite of the fact that we

may have filtered so that the signal being analyzed is narrow band and only ranges

from, say, 38 to 42 Hz. This illustrates an important property of wavelet and other

multiresolution analyses: at low frequencies, frequency resolution is good but time

resolution is poor whereas at high frequencies time resolution is good but frequency

resolution is poor. Note that the poorer the frequency resolution, the less meaning-

ful the phase. It is a common practice (e.g., Delorme and Makeig, 2004; Le Van

Quyen, et al., 2001) to use fewer cycles of the wavelet for lower frequencies (e.g.,

three cycles for 6 Hz) and more cycles for higher frequencies (e.g., eight cycles for

40 Hz) with number of cycles increasing roughly linearly with frequency between

these limits.

The wavelet transform supplies both the amplitude of the envelope of the signal

and the phase at each time point available (see Fig. 1). This is because the wavelet

is passed along the signal from time point to time point, with the wavelet coeffi-

cient for each time point being proportional to the match between the signal and the
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Fig. 1 (A) The amplitude envelope and phase of a sinusoidal signal. (B) A Morlet wavelet-like

those used in wavelet analysis to obtain amplitude and phase of a sinusoidal signal like that in (A)

wavelet in the vicinity of that time point; this is closely related to the amplitude of

the envelope of the signal at that time. The instantaneous phase at that time point, on

the other hand, is the phase offset between the natural oscillation of the wavelet and

the oscillation of the signal. Both of these are reflected in the wavelet coefficients.

The difference between the phases of two signals, j and k, say one from each of two

neural sources, can be computed from the wavelet coefficients for each time and

frequency point from

ei(φ j (τ, f )−φk (τ, f )) =
W j (τ, f ) W ∗

k (τ, f )
∣

∣W j (τ, f ) Wk(τ, f )
∣

∣

(3)

Relative stability of this phase difference across time represents stochastic phase

locking between the signals.

2.2 The Hilbert Transform: Application to Phase-Locking Analysis

Another effective technique available for obtaining the instantaneous phase of a

signal is to use the Hilbert transform to obtain the analytic signal. The analytic

signal, invented by Gabor (1946), is defined for a measured function of time,

h(t), as

ς (t) = h(t)+ i h̃(t) = A(t)eiφ(t) (4)
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where h̃(t) means the Hilbert transform of h(t),

h̃(t) =
1

π
P.V .

∫ ∞

−∞

h(t)

t − τ
dτ, (5)

i =
√
−1, and P.V. indicates a special meaning of the improper integral (Pikovski

et al., 2001). The Hilbert transform shifts a signal’s phase by π /2. Thus, the real

(h(t)) and imaginary (i h̃(t)) parts of the analytic signal are shifted by π /2.

In Eq. (4), the instantaneous amplitude is A(t) and the instantaneous phase is φ(t).

A(t) is the amplitude of the envelope of the signal, and φ(t), the instantaneous phase,

is the quantity that would be entered into computations involving measurement of

synchronization, as when two sources are being compared (again, see Fig. 1). The

Hilbert transform can be computed across relatively short epochs (say 1500 ms) or

even across an entire EEG or MEG record (although available computer resources

might make this infeasible). The latter approach should be viewed as preferable,

given that the Hilbert transform produces distortions at the beginning and end of

each analyzed data segment as it is based on an integral taken from –∞ to +∞. Such

“edge effects” are particularly pronounced at lower frequencies. A practical solution

for this problem is to apply the Hilbert transform to a time series that extends in both

directions beyond the region of interest and to simply discard values near the begin-

ning and end of each segment. Instantaneous phase is only meaningful for narrow

band signals, so filtering must be done before the analytic signal is computed. This

is usually accomplished, as for the wavelet analysis, by applying a digital band-pass

filter to the recorded EEG or MEG signals. We have found that a filter having a

pass-band of f ± 0.05f is effective (e.g., for f = 10 it is from 9.5 to 10.5 Hz).

2.3 Phase-Locking Value

Phase-locking value or PLV is a measure of synchronization that has been success-

fully employed in a variety of experiments and that we regard as the best method

for the assessment of task-dependent EEG and MEG phase synchronizations. PLV

measures the relative constancy of the difference of phases between two signals,

here assumed to be from neural sources, as computed either by the wavelet trans-

form or using the analytic signal, across the trials of an experiment. These trials are

represented in the signals as epochs time-locked to a particular repetitive stimulus

or response (Lachaux et al., 1999). PLV is defined as

P LV j,k,t = N−1

∣

∣

∣

∣

∣

∑

N

ei[φ j (t)−φk (t)]

∣

∣

∣

∣

∣

(6)

where φj(t) and φk(t) are the phases of sources j and k at time point t for each of

the N epochs considered (Lachaux et al., 1999). PLV ranges from a maximum of 1,

when the phase differences are exactly the same across all N epochs, to a minimum
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of 0, when the phase differences vary randomly across the different epochs. In real

data neither of these extreme values can be observed, but values close to 1 or 0 are

often seen. PLV is the length of a resultant vector in the complex plane when each

phase difference, φj(t) – φk(t), is represented by a unit-length vector in the complex

plane, and it is proportional to the standard deviation of the distribution of phase

differences (see Fig. 2). Changes in PLV over time, in the absence of confounding

factors such as volume conduction, reflect changes in the synchronization of the

neural activity in a particular frequency band inferred from the sources.

If the recorded EEG or MEG signal is filtered into several frequency ranges,

and PLV is then calculated for each sample point available for a particular pair of

neural sources, then a time–frequency plot of PLV can be made. Typically baseline-

corrected PLVs (written as PLVz) are plotted rather than raw PLVs. This is done

to remove the record of ongoing synchronization unrelated to task demands. Nor-

malization of PLVs is accomplished by subtracting the mean baseline PLV from the

PLV for every data point and dividing the difference by the standard deviation of

baseline PLV. We have found that a useful baseline is a time period of several hun-

dred milliseconds just before the presentation of the stimulus to which the epochs

are time-locked.

Fig. 2 (A) Unit vectors in the complex plane representing phase differences at a particular time–

frequency point in the baseline period across 10 trials of an experiment. (B) Vectors representing

phase differences that are more concentrated, and thus more phase locked, than during the base-

line period, indicating an increase in synchronization. (C) Vectors representing a decrease in phase

locking relative to the baseline period. (D) A vector representing a PLV value similar to that indi-

cated by the fan of vectors in (B)
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The study of phase synchronization in the human brain remains a nascent enter-

prise and consequently there is no developed statistical theory for the assessment

of normalized PLVs, although progress in this direction has been made for phase

concentration of single signals with respect to a repeated stimulus (e.g., Martı́nez-

Montes et al., 2007). As we await the development of better techniques, surrogate

statistics stand in as a common metric for ascertaining statistical reliability (Le Van

Quyen et al., 2001). Surrogate PLVz distributions are created for each frequency and

time point available by randomly shuffling the epochs for one or both of the sensors

and recomputing PLVz for the scrambled data, a large number of times (in our work

200 times). As the temporal relationships between pairs of sources are random in the

shuffled data, the surrogate distribution of PLVz values represents a null distribution

over the same actual data. If a PLVz value exceeds either the 97.5th (or higher if a

more conservative test is desired) or is less than the 2.5th (or lower) percentile of the

surrogate distribution, then the PLVz is considered to represent a significant increase

(decrease) in synchronization at an alpha level of 0.05. Although our own analyses

employ custom software, a similar PLV analysis has been implemented in com-

mercially available EEG analysis software such as Brain Electrical Source Analysis

(BESA 5.1, Megis Software, Germany). Moreover, the PLV analysis implemented in

BESA has already been used to determine synchronization between neural sources

(Sauseng et al., 2007).

2.4 Phase Cross Coherence in the Assessment of Human Brain

Synchronization

Phase cross coherence should not be confused with linear coherence, which we

do not recommend for estimating synchronization between EEG and MEG signals.

Linear coherence (e.g., Delorme and Makeig, 2004) is defined in terms of wavelet

coefficients as

LC1,2( f, t) =

N
∑

k=1

W1,k( f, t)W ∗
2,k( f, t)

√

N
∑

k=1

∣

∣W1,k( f, t)
∣

∣

2

√

N
∑

k=1

∣

∣W2,k( f, t)
∣

∣

2

(7)

where W1,k( f, t) is the wavelet coefficient for signal 1 at frequency f and time t and

W ∗
2,k( f, t) the complex conjugate of the corresponding wavelet coefficient for signal

2. The problem with linear coherence is that it confounds phase synchronization

with correlated amplitude changes between the signals. It is not useful for EEG and

MEG synchronization analysis because phase synchronization and local amplitude

changes can reflect very different neural processes (i.e., Palva and Palva, 2007).

Phase cross coherence between signals across trials, N, is a much more desirable

measure as it does not suffer from this defect. It is defined in terms of wavelet

coefficients as



Synchronization Between Sources 33

CC1,2( f, t) =
1

N

N
∑

k=1

W1,k( f, t)W ∗
2,k( f, t)

∣

∣W1,k( f, t)W2,k( f, t)
∣

∣

(8)

(e.g., Delorme and Makeig, 2004). In Eq. (8) the denominator, which is the mag-

nitude of the cross product of the wavelet coefficients, is responsible for canceling

out the amplitude information and thus leaving only a function of the phase differ-

ence to be averaged across trials. This index too varies between 1 (for perfect phase

locking) and 0 (for a random phase relationship). Phase coherence analysis can be

implemented using freely downloadable EEG analysis toolboxes which run in MAT-

LAB (The MathWorks, Inc.), such as EEGLAB (Delorme and Makeig, 2004).

3 Dynamic Brain Networks: Synchronization Between Sources

Although determination of synchronization between electrical or magnetic signals

recorded from the human scalp has provided a vista of functional brain dynamics,

such determinations inevitably suffer from an inability to claim any specifics about

the putative brain regions involved in the generation of long-range synchronization

effects. Determination of synchronization between scalp signals also suffers from

contamination by volume conduction, which is the propagation of a signal from a

single source to multiple recording sites, in this case giving rise to spurious synchro-

nization (e.g., Doesburg et al., 2008; Lachaux et al., 1999). This problem is com-

pounded by the certainty that any scalp-recorded signal consists of a superposition

of signals from various neural sources (e.g., Domı́nguez et al., 2007; Menecke et al.,

2005). Numerous advances have provided some means for the reduction of volume

conduction and for the estimation of the magnitude of its effects (i.e., Doesburg

et al., 2008; Nunez et al., 1997, 1999). Nevertheless, volume conduction and signal

superposition remain concerns for studies reporting synchronization between elec-

trodes or sensors placed on or near the scalp. Implanted electrodes, conversely, leave

no doubt that their signals originate from near the sensor, but such studies are blind

to any activity occurring away from the recording sites. This is a particularly pro-

nounced deficit in studies using electrodes implanted in humans, as the placement

of these sensors is typically performed according to the goals of medical procedures

and not those of scientific investigation.

Elucidation of dynamic, synchronously oscillating networks in the brain requires

the localization of the generators of task-relevant oscillatory brain activity, and sub-

sequently, estimation of phase synchronization between those sources. This step is

necessary if strong claims are to be made about the putative engagement of specific

brain regions in large scale, synchronous, oscillatory brain networks. Moreover,

such analyses make some progress toward solving the related problems of spuri-

ous synchronization induced by volume conduction and by signal superposition. In

pursuit of this end, we will summarize various approaches to EEG/MEG source

localization, survey their relative strengths and weaknesses, and discuss some stud-

ies that have successfully combined source localization with long-distance phase
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synchronization measures. We will also point to available software for the imple-

mentation of each of the source-localization techniques. The nascent merger of

source localization with synchronization analysis signifies the crossing of an impor-

tant threshold in the study of neural dynamics, and the perfection of such unions

will be critical to further advances in the field.

3.1 Synchronization Between Sources Using “Blind”

Source Separation

Source localization techniques used in EEG and MEG analysis fall broadly into

two categories, those that are “blind” and rely solely on the identification of sta-

tistically independent components that account for some portion of the variance in

the signal, and those that utilize some form of model of the human head, account-

ing for its dimensions and conductivities in an attempt to relate signals measured

at the scalp to their neural origins. Blind source-separation techniques for EEG and

MEG data most commonly employ either independent component analysis (ICA)

or principal component analysis (PCA). ICA attempts to separate the superimposed

recorded time series of potential, current, or magnetic field variations arising from

different neural sources by reversing the superposition of such signals (Onton et al.,

2006). This is accomplished for the recorded data matrix, X, consisting of n chan-

nels by t time points, by using a neural network to discover an “unmixing” matrix,

W, that when multiplied by the data matrix produces a matrix, U, of maximally

temporally independent components: U = WX. The criterion for independence is a

non-parametric, informational one, i.e., the components of U share minimal mutual

information with each other (e.g., Ungureanu et al., 2004). Thus, the various inde-

pendent components also have minimal, higher-order statistical relationships with

one another although they are not necessarily (or typically) orthogonal in the corre-

lation sense. Scalp maps of the independent components that account for significant

amounts of the variance in the recorded signal can be computed from the inverse of

the unmixing matrix, W–1, and these can be used to fit equivalent dipoles to char-

acterize the anatomical location of the neural sources presumed to be responsible

for those components. Equivalent dipole fitting can be accomplished using a range

of software packages including BESA (BESA 5.1, Megis Software, Germany) and

EEGLAB (dipfit 2 plugin, Delorme and Makeig, 2004). Often the location of the

best-fitting dipole is anatomically implausible, i.e., outside the head or in white mat-

ter; such components are probably artifacts of some sort (e.g., muscle movements)

and can be eliminated from consideration. When the location is anatomically plau-

sible, and the fit is good enough, then the dipole can be taken to be a useful repre-

sentation of a neural source and its relationships to other such sources can then be

ascertained.

One problem that arises with the fitting of dipoles, unlike other source-

localization methods discussed below, is that it does not result in a unique solution.

Or rather, many different solutions with the same number of dipoles, varying only

slightly in location, orientation, and strength, and having nearly the same residual
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variances, are possible. Moreover, by adding dipoles to the solution set, ever better

solutions can be found. Thus, assumptions brought to bear by the researcher, such

as whether or not bilateral activation is expected, must be used to discover the most

useful solution. One approach that is relatively free of biases is to insist that each

independent component be accounted for by a single, best-fitting dipole that has

residual variance less than some criterion (often 5%) and is anatomically plausible

or even predicted before the experiment. This ensures that researcher biases will not

result in over-interpretation of the data.

ICA analysis has proven to be well suited to source localization in the study of

dynamic networks, as many of the components identified by this method do rep-

resent the activities of single anatomical sources. Importantly, when the number

of recorded data channels is large enough (31 or more), ICA can reveal multiple

sources of this type (Onton and Makeig, 2006; Onton et al., 2006). Given this, it is

unsurprising that ICA has been successfully combined with phase cross coherence

analysis in high-density EEG data, such as in the study of oscillatory synchroniza-

tion in pain networks (Drewes et al., 2006).

Synchronization between oscillatory sources, it should be noted, is itself a form

of temporal dependency. The study of task-dependent phase synchronization, how-

ever, has found many synchronization effects to be relatively short lived, and tran-

sient synchronization effects are thus possible between components identified as

independent over entire data segments. This is particularly true when ICA is applied

to a time series of recordings before they have been divided into stimulus- or

response-relevant epochs. Also, the maximal informational independence criterion

in ICA implies only that a solution is found in which mutual information among

all possible pairs of components is minimal, not zero. Moreover, mutual informa-

tion is minimized for the total signal, which contains a mixture of amplitude and

phase information, whereas the phase cross-coherence measure is unaffected by any

correlations, or lack thereof, of the amplitude envelopes of the two sources. Thus

phase cross-coherence can be observed between two sources even when variations

in their activity over time have been identified as maximally temporally indepen-

dent. Another practical question is whether ICA is to be applied to data that have

already been subjected to narrow band-pass filtering or whether it is used to iden-

tify components of broadband signals and spectral information from these sources is

determined thereafter. Identification of components within specific frequency ranges

carries greater neural meaning. It is more likely, however, that task-relevant synchro-

nization would be preserved between components showing maximal temporal inde-

pendence across a wider frequency spectrum, given that functional synchronization

is typically expressed in a narrow frequency range.

Principal component analysis is another method of blind separation that has been

effectively employed for EEG source localization. It is a parametric method that

creates a series of mutually orthogonal components that each explain as much of the

remaining data variance as possible. It utilizes the linear correlations between pairs

of signals as a starting point and creates successive components all of whose pair-

wise correlation coefficients are zero. Principal component analysis can be used to

separate multichannel EEG or MEG data into temporally and spatially independent
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components that can often be associated with particular neural generators, as in ICA

(Chapman and McCrary, 1995). Such neural sources could then be studied for syn-

chronization in the same way as those derived from ICA. One drawback of PCA is

that it attempts to lump together as much of the data variance as possible into each

component, even though it may include several temporally independent sources. In

contrast ICA attempts to split apart such sources. Thus, ICA is probably the pre-

ferred technique to discover temporally independent neural sources. In the context

of oscillatory dynamics, however, it should be noted that PCA can also be used to

decompose EEG data into its composite time–frequency components (Lagerlund

et al., 2004; Bernat et al., 2005). PCA is a widely used tool in EEG analysis and is

implemented in various software analysis suites, such as BESA and EEGLAB.

3.2 Synchronization Between Neural Sources Identified

Using Anatomical Constraints

A second family of analysis techniques that has proven to be useful in the localiza-

tion of EEG and MEG generators uses some form of head model to constrain solu-

tions. Like “blind” separation techniques, this group of methods also uses spatial

and temporal independence to assign activations to various neural locations. Such

activations, however, are assigned directly in “brain space” by applying models of

the human head that take into account various properties, such as the conductance

of the skull, scalp, and brain.

A preeminent technique for the localization of oscillatory sources in cognition

that has borne increasingly promising fruit is beamformer analysis. Beamformer

analysis produces an estimate of the unique contribution of each voxel in a source

space to activity measured at or near the scalp. It does this by creating a set of spatial

filters that linearly pass contributions from a given voxel while reducing contribu-

tions from all other voxels within a designated time–frequency window (Van Veen

et al., 1997). Beamformer and all similar approaches begin by assuming the equiv-

alent dipole model of a neural generator for each voxel in a source space (brain).

Here, however, additional constraints, such as minimizing the variance of the fil-

ter output while allowing the entire signal at the selected voxel to pass (Van Veen

et al., 1997), are imposed that yield a unique solution, unlike unconstrained dipole

fitting. Perhaps most seminal and prolific among this family is the “dynamic imag-

ing of coherent sources” (DICS) approach, which has been principally employed in

the study of functional networks in the motor system (Gross et al., 2001; Schnitzler

and Gross, 2005b). The DICS method was designed specifically for the study of

coherence across multiple localized sources of oscillatory activity and its efficacy

has been robustly demonstrated in imaging task-dependent activation in the motor

system (i.e., Pollok et al., 2005; Timmermann et al., 2004). Although much pub-

lished work using DICS has been performed by the progenitors of the technique, it

has now been implemented in software analysis packages such as Fieldtrip, which

runs as a toolbox in MATLAB.
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Other variants of beamformer analysis suitable for the determination of multi-

ple sources can be found in commercially available software such as the BESA

suite (BESA 5.1; Megis Software, Germany). Such software applications have

proven to be effective in revealing the sources and timing of oscillations relevant

to cognitive processes such as endogenous attention control. For example, Green

and McDonald (2008) used BESA beamformer to uncover a series of activations

in theta-band-filtered EEG signals as human subjects performed a visual atten-

tion orienting task. The order and timing of activations (early visual cortex, pari-

etal lobe, frontal cortex, parietal lobe, and early visual cortex again) corresponded

to the expected sequence of activations involved in orienting visual attention to

a specific region of visual space under endogenous control. Recently we com-

bined theta-band beamformer sources identified from EEG data by BESA with

PLV analysis to reveal task-dependent synchronization effects between sources

in the context of both auditory and visual endogenous attention orienting. In our

analysis of visual attention orienting, parietal and occipital sources identified by

Green and McDonald (2008) were synchronized in the alpha band, continuously

from about 300 ms after cue onset until the target appeared, on the side con-

tralateral to the visual field toward which orienting was taking place (Doesburg

et al., 2008, unpublished). In our analysis of auditory attention orienting, synchro-

nization between activated brain areas occurred mainly when activity in one area

was declining while activity in another was increasing, indicating that information

resulting from processing in the earlier area was being passed to the next area in

the sequence (Green et al., 2008, unpublished). BESA beamformer is also effec-

tive at identifying neural sources within relatively short time windows, allowing

for the mapping of sequentially activated sets of cortical regions embodying orga-

nized stages of processing underlying a complex process (Green and McDonald,

2008). Moreover, when PLVs are computed between generators identified in this

manner, complementary long-range phase synchronization effects are revealed, sug-

gesting that this method may prove fruitful in illuminating the evolution of func-

tional network dynamics over relatively short periods of time (Green et al., 2008,

unpublished).

Another productive manifestation of beamformer analysis can be found in

synthetic aperture magnetometry (SAM) developed for MEG analysis (Vrba and

Robinson, 2001). Event-related SAM (erSAM) has been used to uncover sources

of neuro-magnetic activity associated with cognitive processing (Herdman et al.,

2007; see Hillebrand and Barnes, 2005 for a review). Studies employing a com-

bination of the beamformer technique (using both BESA algorithms and SAM)

with PLV analysis have proven to be effective for elucidation of large-scale oscilla-

tory synchronous brain networks. An example of this can be found in the analysis

of phase synchronization between reconstructed sources of oscillatory activation.

Convergent results have been found using BESA beamformer algorithms (EEG)

and SAM analysis (MEG) in conjunction with the PLV technique (analytic signal

approach). In both cases, when attention is endogenously deployed to one visual

hemifield, increased synchronization in the alpha band is observed between recon-

structed occipital and parietal sources in the contralateral hemisphere (Doesburg
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Fig. 3 Example of

synchronization between

SAM beamformer sources.

Black (white) lines represent

synchronization

(desynchronization). Reddish

areas represent alpha sources

and blue bars represent local

alpha power in early visual

cortex for each hemisphere

et al., 2007, 2008, unpublished). Figure 3 shows SAM beamformer sources from

the MEG experiment projected to the cortical surface, along with an indication of

which sources are synchronized or desynchronized at the moment depicted (800 ms

after an orienting cue was presented; black (white) lines indicate synchronization

increases (decreases)). Interestingly, this lateralization of long-distance synchro-

nization is inversely related to local occipital alpha power measurements in the

same frequency range (Fig. 3, blue bar graphs), illustrating the complexity of the

relationship between oscillatory synchronization and cognitive processing. More

importantly, such results highlight the importance of using analysis techniques that

separate phase synchronization from correlated local amplitude changes.

Perhaps the most elegant technique for the determination of locally coherent

oscillatory sources and the extraction of epoched signals for phase-locking anal-

ysis is one in which minimum norm current solutions are employed in an iterative

sequence to determine intertrial coherence and coherence between adjacent vox-

els for source reconstruction (David and Garnero, 2002; David et al., 2002, 2003).

To date, however, this technique has only been used in the processing of brain

responses entrained by flickering stimuli and has not been employed for the estima-

tion of endogenous oscillatory activity (e.g., Cosmelli et al., 2004). Unfortunately,

no widely accessible software exists for the performance of this state-of-the-art anal-

ysis. These methods, however, are well documented in the literature (above) and

await reimplementation by an enterprising investigator.

Autoregressive techniques also have been employed for the estimation of mul-

tiple sources of task-relevant oscillatory activation within a particular frequency
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band. Sources identified using this method can be successfully combined with PLV

analysis, as has been eloquently demonstrated in the study of gamma oscillations in

the human object recognition network (Supp et al., 2007). The reliability of effects

gained using this method has been demonstrated through replication (Gruber et al.,

2008). Moreover, these source-localization effects and corresponding phase syn-

chronization effects were obtained for high-frequency gamma-band signals. Local-

ization of such rhythms is difficult as this frequency range contributes little to overall

spectral power, but has been profusely evidenced as important to information pro-

cessing in the cerebral cortex (Kaiser and Lutzenberger, 2005). Another advantage

of this approach is that it has proven to be compatible with available methods for the

calculation of Granger causality measures that can be used to index the causal direc-

tion of information flow between sources (Baccala and Sameshima, 2001). This is

attractive because phase synchronization in the brain, which has been theoretically

related to increased causal interaction, can thus be directly compared with just such

a measure. The open source software used in all stages of this analysis, BioSig

(Version 1.95), is freely available online at http://biosig.sourceforge.net/

Low resolution brain electromagnetic tomography (LORETA) (Pascual-Marqui

et al., 1994) is another functional imaging method based on electrophysiological

and neuroanatomical constraints. LORETA and its variants have been employed by

many studies seeking to analyze ERP components as well as spectral components of

EEG activation (see Pascual-Marqui et al., 2002 for a review). In view of this track

record, LORETA also promises to be a useful method for the localization of neural

generators in the study of long-distance neural synchronization.

4 Summary and Conclusion

The study of dynamic functional networks in the brain will require techniques

to localize sources of activation and to determine synchronization between such

sources. From our current point of departure there are many viable paths toward

this goal. Which road is best will depend largely on the questions being addressed,

and careful consideration must be given to which methods of synchronization

analysis are combined with particular means of source imaging—not all methods

may be compatible. Because these two streams of understanding have evolved,

until relatively recently, as separate enterprises, the choosing of an appropriate

pairing will be important. As the terrain here is varied, it is beyond the reach

of this chapter to provide a walkthrough of each method, and providing one

method would not adequately service those interested in various researches into

this subject. We have accordingly provided an overview and primer to the vari-

ous approaches thus far used to study synchronization between sources of brain

activity.
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