VOLUME I List of Contributors Foreword I INTRODUCTION: HISTORY, XAS, XES, AND THEIR IMPACT ON SCIENCE 1 Introduction: Historical Perspective on XAS Jeroen A. van Bokhoven and Carlo Lamberti 1.1 Historical Overview of 100 Years of X-Ray Absorption: A Focus on the Pioneering 1913-1971 Period 1.2 About the Book: A Few Curiosities, Some Statistics, and a Brief Overview References II EXPERIMENTAL AND THEORY 2 From Synchrotrons to FELs: How Photons Are Produced; Beamline Optics and Beam Characteristics Giorgio Margaritondo 2.1 Photon Emission by Accelerated Charges: from the Classical Case to the Relativistic Limit 2.2 Undulators, Wigglers, and Bending Magnets 2.2.1 Undulators 2.2.2 Wigglers 2.2.3 Bending magnets 2.2.4 High flux, high brightness 2.3 The Time Structure of Synchrotron Radiation 2.4 Elements of Beamline Optics

Table of Contents

2.4.1 Focusing devices

2.4.2 Monochromators

2.5 Free Electron Lasers
2.5.1 FEL optical amplification
2.5.2 Optical amplification in an X-FEL: details
2.5.3 Saturation
2.5.4 X-FEL time structure: new opportunities for spectroscopy
2.5.5 Time coherence and seeding
References
3 Real-Space Multiple-Scattering Theory of X-ray Spectra
Joshua J. Kas, Kevin Jorisson and John J. Rehr
3.1 Introduction
3.2 Theory
3.2.1 Independent-particle approximation
3.2.1 Independent-particle approximation3.2.2 Real-space multiple-scattering theory
3.2.2 Real-space multiple-scattering theory
3.2.2 Real-space multiple-scattering theory3.2.3 Many body effects in x-ray spectra
3.2.2 Real-space multiple-scattering theory3.2.3 Many body effects in x-ray spectra3.3 Applications
3.2.2 Real-space multiple-scattering theory3.2.3 Many body effects in x-ray spectra3.3 Applications3.3.1 XAS, EXAFS, XANES
 3.2.2 Real-space multiple-scattering theory 3.2.3 Many body effects in x-ray spectra 3.3 Applications 3.3.1 XAS, EXAFS, XANES 3.3.2 EELS

2.4.3 Detectors

3.3.6 RIXS

3.3.7 Compton scattering
3.3.8 Optical constants
3.4 Conclusion
References
4 Theory of X-ray Absorption Near Edge Structure
Yves Joly and Stephane Grenier
4.1 Introduction
4.2 The x-ray Absorption Phenomena
4.2.1 Probing material
4.2.2 The different spectroscopies
4.3 X-ray Matter Interaction
4.3.1 Interaction Hamiltonian
4.3.2 Absorption cross-section for the transition between two states
4.3.3 State description
4.3.4 The transition matrix
4.4 XANES General Formulation
4.4.1 Interaction times and the multi-electronic problem
4.4.2 Absorption cross-section main equation
4.5 XANES Simulations in the Mono-Electronic Scheme
4.5.1 From multi- to mono-electronic
4.5.2 The different methods

4.5.3 The multiple scattering theory

4.6.1 Atomic multiplets
4.6.2 The crystal field
4.7 Current Theoretical Developments
4.8 Tensorial Approaches
4.9 Conclusion
References
5 How to Start an XAS Experiment
Diego Gianolio
5.1 Introduction
5.2.1 Identify the scientific question
5.2.2 Can XAS solve the problem?
5.2.3 Select the best beamline and measurement mode
5.2.4 Write the proposal
5.3 Prepare the Experiment
5.3.1 Experimental design
5.3.2 Best sample conditions for data acquisition
5.3.3 Sample preparation
5.4 Perform the Experiment
5.4.1 Initial set-up and optimization of signal
5.4.2 Data acquisition
References

4.6 Multiplet Ligand Field Theory

Pieter Glatzel, Roberto Alonso-Mori, and Dimosthenis Sokaras
6.1 Introduction
6.2 History
6.3 Basic Theory of XES
6.3.1 One- and multi-electron description
6.3.2 X-ray Raman scattering spectroscopy
6.4 Chemical Sensitivity of X-ray Emission
6.4.1 Core-to-core transitions
6.4.2 Valence-to-core transitions
6.5 HERFD and RIXS
6.6 Experimental X-ray Emission Spectroscopy
6.6.1 Sources for x-ray emission spectroscopy
6.6.2 X-ray emission spectrometers
6.6.3 Detectors
6.7 Conclusion
References
7 QEXAFS: Techniques and Scientific Applications for Time-Resolved XAS
Maarten Nachtegaal, Oliver Muller, Christian Konig and Ronald Frahm
7.1 Introduction
7.2 History and Basics of QEXAFS

7.3 Monochromators and Beamlines for QEXAFS

6 Hard X-ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and Applications

7.3.2 Piezo-QEXAFS for the millisecond time range
7.3.3 Dedicated oscillating monochromators for QEXAFS
7.4 Detectors and Readout Systems
7.4.1 Requirements for detectors
7.4.2 Gridded ionization chambers
7.4.3 Data acquisition
7.4.4 Angular encoder
7.5 Applications of QEXAFS in Chemistry
7.5.1 Following the fate of metal contaminants at the mineral–water interface
7.5.2 Identifying the catalytic active sites in gas phase reactions
7.5.4 Synthesis of nanoparticles
7.5.5 Identification of reaction intermediates: modulation excitation XAS
7.6 Conclusion
Acknowledgements
References
8 Time-Resolved XAS Using an Energy Dispersive Spectrometer: Techniques and Applications
Olivier Mathon, Innokenty Kantor and Sakura Pascarelli
8.1 Introduction
8.2 Energy Dispersive X-Ray Absorption Spectroscopy
8.2.1 Historical development of EDXAS and overview of existing facilities
8.2.2 Principles: source, optics, detection

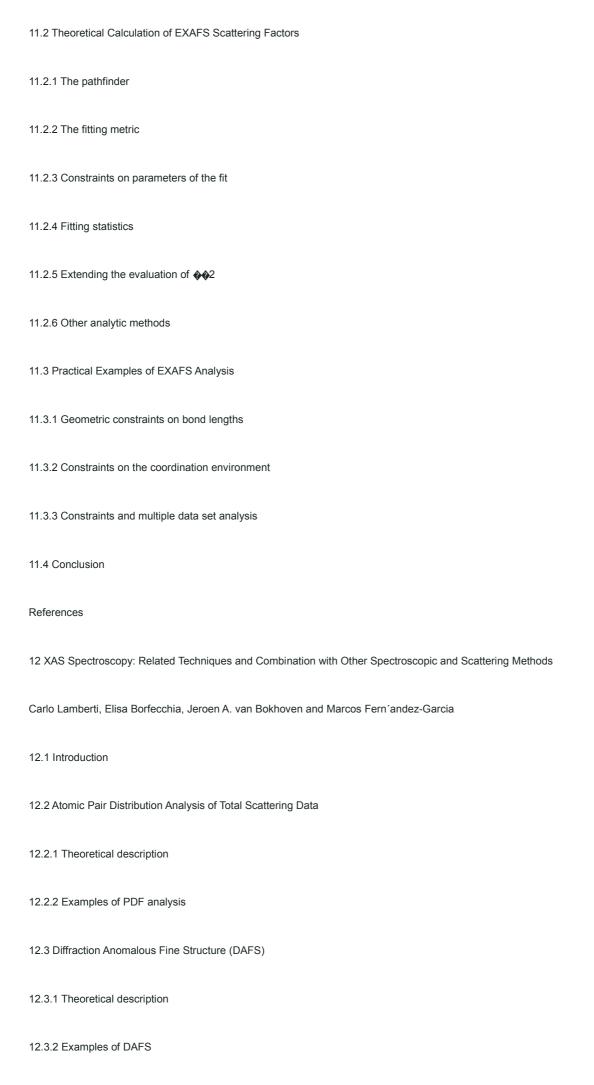
7.3.1 QEXAFS with conventional monochromators

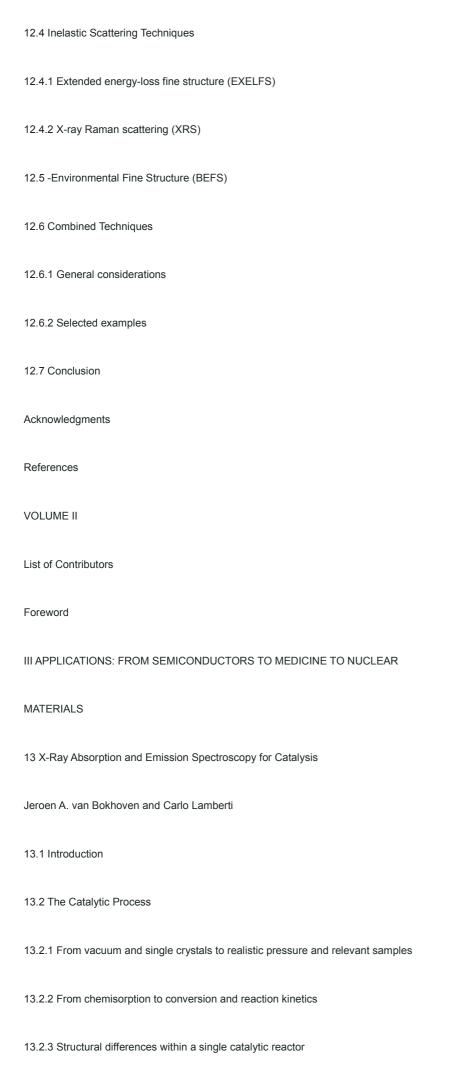
8.2.4 Description of the EDXAS beamline at ESRF
8.3 From the Minute Down to the Ms: Filming a Chemical Reaction <i>in Situ</i>
8.3.1 Technical aspects
8.3.2 First stages of nanoparticle formation
8.3.3 Working for cleaner cars: automotive exhaust catalyst
8.3.4 Reaction mechanisms and intermediates
8.3.5 High temperature oxidation of metallic iron
8.4 Down to the ��s Regime: Matter under Extreme Conditions
8.4.1 Technical aspects
8.4.2 Melts at extreme pressure and temperature
8.4.3 Spin transitions at high magnetic field
8.4.4 Fast ohmic ramp excitation towards the warm dense matter regime
8.5 Playing with a 100 ps Single Bunch
8.5.1 Technical aspects
8.5.2 Detection and characterization of photo-excited states in Cu+ complexes
8.5.3 Opportunities for investigating laser-shocked matter
8.5.4 Non-synchrotron EDXAS
8.6 Conclusion
References
9 X-Ray Transient Absorption Spectroscopy
Lin X. Chen

9.1 Introduction

8.2.3 Dispersive versus scanning spectrometer for time-resolved experiments

9.2.1 Background
9.2.2 The basic set-up
9.3 Experimental Considerations
9.3.1 XTA at a synchrotron source
9.3.2 XTA at X-ray free electron laser sources
9.4 Transient Structural Information Investigated by XTA
9.4.1 Metal center oxidation state
9.4.2 Electron configuration and orbital energies of X-ray absorbing atoms
9.4.3 Transient coordination geometry of the metal center
9.5 X-Ray Pump-Probe Absorption Spectroscopy: Examples
9.5.1 Excited state dynamics of transition metal complexes (TMCs)
9.5.2 Interfacial charge transfer in hybrid systems
9.5.3 XTA studies of metal center active site structures in metalloproteins
9.5.4 XTA using the X-ray free electron lasers
9.5.5 Other XTA application examples
9.6 Perspective of Pump-Probe X-Ray Spectroscopy
Acknowledgments
References
10 Space-Resolved XAFS, Instrumentations and Applications
Yoshio Suzuki and Yasuko Terada

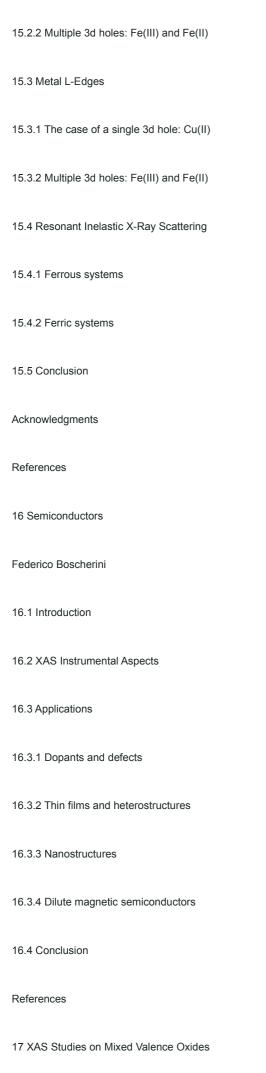

10.1 Space-Resolving Techniques for XAFS


9.2 Pump-Probe Spectroscopy

10.2.1 Total reflection mirror systems
10.2.2 Fresnel zone plate optics for x-ray microbeam
10.2.3 General issues of beam-focusing optics
10.2.4 Requirements on beam stability in microbeam XAFS experiments
10.3 Examples of Beam-Focusing Instrumentation
10.3.1 The total-reflection mirror system
10.3.2 Fresnel zone plate system
10.4 Examples of Applications of Microbeam-XAFS Technique to Biology and nenvironmental Science
10.4.1 Speciation of heavy metals in willow
10.4.2 Characterization of arsenic-accumulating mineral in a sedimentary iron deposit
10.4.3 Feasibility study for microbeam XAFS analysis using FZP optics
10.4.4 Micro-XAFS studies of plutonium sorbed on tuff
10.4.5 Micro-XANES analysis of vanadium accumulation in ascidian blood cell
10.5 Conclusion and Outlook
References
11 Quantitative EXAFS Analysis
Bruce Ravel
11.1 A Brief History of EXAFS Theory
11.1.1 The n-body decomposition in GNXAS
11.1.2 The exact curved wave theory in EXCURVE

11.1.3 The path expansion in FEFF

10.2 Beam-Focusing Instrumentation for Microbeam Production


13.3 Reaction Kinetics from Time-Resolved XAS
13.3.1 Oxygen storage materials
13.3.2 Selective propene oxidation over ��-MoO3
13.3.3 Active sites of the dream reaction, the direct conversion of benzene to phenol
13.4 Sub-Micrometer Space Resolved Measurements
13.5 Emerging Methods
13.5.1 X-ray emission spectroscopy
13.5.2 Pump probe methods
13.6 Conclusion and outlook
References
14 High Pressure XAS, XMCD and IXS 383
Jean-Paul Itie, Francois Baudelet and Jean-Pascal Rueff
14.1 Introduction
14.1.1 Why pressure matters
14.1.2 High-pressure generation and measurements
14.1.3 Specific drawbacks of a high-pressure set-up
14.2 High Pressure EXAFS and XANES
14.2.1 Introduction
14.2.2 Local equation of state
14.2.3 Pressure-induced phase transitions

14.2.4 Glasses, amorphous materials, amorphization

13.2.4 Determining the structure of the active site

14.3 High-Pressure Magnetism and XMCD
14.3.1 Introduction
14.3.2 Transition metal
14.3.3 Magnetic insulator
14.3.4 The rare earth system
14.4 High Pressure Inelastic X-Ray Scattering
14.4.1 Electronic structure
14.4.2 Magnetic transitions in 3d and 4f electron systems
14.4.3 Metal insulator transitions in correlated systems
14.4.4 Valence transition in mixed valent rare-earth compounds
14.4.5 Low-energy absorption edges: chemical bonding and orbital configuration
14.5 Conclusion
References
15 X-Ray Absorption and RIXS on Coordination Complexes
Thomas Kroll, Marcus Lundberg and Edward I. Solomon
15.1 Introduction
15.1.1 Geometric and electronic structure of coordination complexes
15.1.2 X-ray probes of coordination complexes
15.1.3 Extracting electronic structure from X-ray spectra
15.2 Metal K-Edges
15.2.1 The case of a single 3d hole: Cu(II)

14.2.5 Extension to low and high energy edges

17.1 Introduction
17.1.1 X-ray absorption spectroscopy (XAS)
17.1.2 XES and XAS
17.1.3 Resonant x-ray scattering
17.2 Solid State Applications (Mixed Valence Oxides)
17.2.1 High tc superconductors
17.2.2 Manganites
17.2.3 Perovskite cobaltites
17.3 Conclusion
References
18 Novel XAS Techniques for Probing Fuel Cells and Batteries
David E. Ramaker
18.1 Introduction
18.2 XANES Techniques
18.2.1 Data analysis
18.2.2 Data collection
18.2.3 Comparison of techniques by examination of O(H)/Pt and CO/Pt
18.3 In Operando Measurements
18.3.1 Fuel cells
18.3.2 Batteries

18.4 Future Trends

Joaquýn Garcýa, Gloria Subýas and Javier Blasco

18.5.1 Details of the △�� XANES analysis technique
18.5.2 FEFF8 theoretical calculations
References
19 X-ray Spectroscopy in Studies of the Nuclear Fuel Cycle
Melissa A. Denecke
19.1 Background
19.1.1 Introduction
19.1.2 Radioactive materials at synchrotron sources
19.2 Application Examples
19.2.1 Studies related to uranium mining
19.2.2 Studies related to fuel
19.2.3 Investigations of reactor components
19.2.4 Studies related to recycle and lanthanide/actinide separations
19.2.5 Studies concerning legacy remediation and waste disposal (waste forms, near-field and far-field)
19.3 Conclusion and Outlook
References
20 Planetary, Geological and Environmental Sciences
Francois Farges and Max Wilke
20.1 Introduction
20.2 Planetary and Endogenous Earth Sciences

20.2.1 Planetary materials and meteorites

18.5 Appendix

20.2.3 Magmatic and volcanic processes
20.2.4 Element complexation in aqueous fluids at P and T
20.3 Environmental Geosciences
20.3.1 General trends
20.3.2 Environmentally relevant minerals and phases
20.3.3 Mechanisms and reactivity at the mineral-water interfaces
20.3.4 Some environmental applications of x-ray absorption spectroscopy
20.4 Conclusion
Acknowledgments
References
21 X-Ray Absorption Spectroscopy and Cultural Heritage: Highlights and Perspectives
Franc, ois Farges and Marine Cotte
21.1 Introduction
21.1 Introduction21.2 Instrumentation: Standard and Recently Developed Approaches
21.2 Instrumentation: Standard and Recently Developed Approaches
21.2 Instrumentation: Standard and Recently Developed Approaches 21.2.1 From centimetric objects to micrometric cross-sections
21.2 Instrumentation: Standard and Recently Developed Approaches 21.2.1 From centimetric objects to micrometric cross-sections 21.2.2 Improving the spectral resolution of XRF detectors
21.2 Instrumentation: Standard and Recently Developed Approaches 21.2.1 From centimetric objects to micrometric cross-sections 21.2.2 Improving the spectral resolution of XRF detectors 21.2.3 From hard X-rays to soft X-rays

20.2.2 Crystalline deep earth materials

21.3.3 Pigments and Paintings

22.3.1 Ultrafast spin-crossover excitation probed with X-ray absorption spectroscopy

22.3.2 Ultrafast spin cross-over excitation probed with X-ray emission spectroscopy

22.3.3 Simultaneous measurement of the structural and electronic changes in Photosystem II after photoexcitation

22.3.5 Soft X-ray emission spectroscopy measurements of dilute systems
22.4 Examples of Nonlinear X-Ray Spectroscopy at XFELs
22.4.1 X-ray-induced transparency
22.4.2 Sequential ionization and core-to-core resonances
22.4.3 Hollow atoms
22.4.4 Solid-density plasma
22.4.5 Two-photon absorption
22.5 Conclusion and Outlook
References
23 X-ray Magnetic Circular Dichroism
Andrei Rogalev, Katharina Ollefs and Fabrice Wilhelm
23.1 Historical Introduction
23.2 Physical Content of XMCD and the Sum Rules
23.3 Experimental Aspects and Data Analysis
23.3.1 Sources of circularly polarized x-rays
23.3.2 Sample environment
23.3.3 Detection modes
23.3.4 Standard analysis
23.4 Examples of Recent Research
23.4.1 Paramagnetism of pure metallic clusters

23.4.2 Magnetism in diluted magnetic semiconductors

22.3.4 Investigating surface photochemistry

23.5 Conclusion and Outlook
Acknowledgments
References
24 Industrial Applications
Simon R. Bare and Jeffrey Cutler
24.1 Introduction
24.2 The Patent Literature
24.2.1 Catalysts
24.2.2 Batteries
24.2.3 Other applications
24.3 The Open Literature
24.3.1 Semiconductors, thin films, and electronic materials
24.3.2 Fuel cells, batteries, and electrocatalysts
24.3.3 Metallurgy and tribology
24.3.4 Homogeneous and heterogeneous catalysts
24.3.5 Miscellaneous applications: from sludge to thermographic films
24.4 Examples of Applications from Light Sources
24.4.1 Introduction
24.4.2 Industrial science at the Canadian Light Source
24.4.3 Use of SOLEIL beamlines by industry

24.4.4 Industrial research enhancement program at NSLS

23.4.3 Photomagnetic molecular magnets

24.5 Examples of Applications from Companies
24.5.1 Introduction
24.5.2 Haldor Topsøe A/S
24.5.3 UOP LLC, a Honeywell Company
24.5.4 General Electric Company
24.5.5 IBM Research Center
24.6 Conducting Industrial Research at Light Sources
24.7 Conclusion and Outlook
Acknowledgements
References
25 XAS in Liquid Systems
Adriano Filipponi and Paola D'Angelo
25.1 The Liquid State of Matter
25.1.1 Thermodynamic considerations
25.1.2 Pair and higher order distribution functions
25.2 Computer Modelling of Liquid Structures
25.2.1 Molecular Dynamics simulations
25.2.2 Classical Molecular Dynamics
25.2.3 Born-Oppenheimer Molecular Dynamics 25.2.4 Car-Parrinello Molecular Dynamics
25.2.5 Monte Carlo simulation approaches

25.3 XAFS Calculations in Liquids/Disordered Systems

24.4.5 The Swiss Light Source: cutting-edge research facilities for industry

25.3.2 XAFS signal decomposition
25.3.3 XAFS signal from the pair distribution
25.3.4 The triplet distribution case in elemental systems
25.4 Experimental and Data-Analysis Approaches
25.4.1 Sample confinement strategies and detection techniques
25.4.2 High pressure, temperature control, and XAS sensitivity to phase transitions
25.4.3 Traditional versus atomistic data-analysis approaches
25.5 Examples of Data Analysis Applications
25.5.1 Elemental systems: icosahedral order in metals
25.5.3 Transition metal aqua ions
25.5.4 Lanthanide aqua ions
25.5.4 Lanthanide aqua ions 25.5.5 Halide aqua ions: the bromide case
25.5.5 Halide aqua ions: the bromide case
25.5.5 Halide aqua ions: the bromide case References
25.5.5 Halide aqua ions: the bromide case References 26 Surface Metal Complexes and Their Applications
25.5.5 Halide aqua ions: the bromide case References 26 Surface Metal Complexes and Their Applications Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates
25.5.5 Halide aqua ions: the bromide case References 26 Surface Metal Complexes and Their Applications Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates 26.1 Introduction
25.5.5 Halide aqua ions: the bromide case References 26 Surface Metal Complexes and Their Applications Joseph D. Kistler, Pedro Serna, Kiyotaka Asakura and Bruce C. Gates 26.1 Introduction 26.1.1 Ligands other than supports

25.3.1 XAFS sensitivity and its specific role

26.2 Aim of the Chapter

26.3 Mononuclear Iridium Complexes Supported on Zeolite HSSZ-53: Illustration of EXAFS