Oropharynx: Epidemiology and Treatment Outcome

Edith Filion and Quynh-Thu Le

CONTENTS

2.1 Introduction 16
2.2 Epidemiology 16
2.3 Staging 17
2.3.1 The Role of 18F-Fluoro Deoxy-Glucose Positron Emission Tomography in OPSCC Management 17
2.4 Treatment by Stages 18
2.4.1 Early Stage (Stages I–II) 18
2.4.2 Locally Advanced Stage (Stages III–IV) 19
2.4.2.1 Surgery and Adjuvant Radiotherapy vs. Radiotherapy or Chemoradiotherapy 19
2.4.2.2 Radiation Fractionation 19
2.4.2.3 Chemotherapy and Radiation Therapy 19
2.4.2.4 Targeted Therapy 20
2.4.2.5 Postoperative Treatment: Radiation and Chemoradiation 20
2.5 Radiation Therapy Technique: Three-Dimensional Conformal Radiation Therapy vs. Intensity-Modulated Radiotherapy 21
2.6 Treatment-Related Toxicities 22
2.6.1 Acute Toxicities 22
2.6.2 Late Toxicities 23
2.7 Conclusion 26
Abbreviations 26
References 26

KEY POINTS

- Oropharyngeal (OP) carcinoma comprises over half of all head and neck cancers in the United States.
- While the incidence of squamous cell carcinoma (SCC) in the other head and neck sites has been steadily declining in association with smoking cessation, the incidence of SCC in the OP is rising, especially in younger patients and has been linked to the exposure of the human papillomavirus (HPV).
- The treatment of OP carcinoma is complex because of the intricate anatomy of the involved organs, their rich lymphatic networks, and their critical function in the activities of daily living. Such treatment therefore requires a multidisciplinary approach.
- This chapter focuses on the epidemiology of OP squamous cell carcinoma, specifically looking at the emerging role of HPV virus in their development.
- It also describes the different treatment options for these tumors with a focus on those for organ preservation.
- Finally, it highlights recent advances in treatment using molecularly targeted therapies and modern radiation delivery using intensity-modulated approach with the goal to minimize treatment-related toxicity in these highly curable patients.
2.1 Introduction

Oropharynx squamous cell carcinoma (OPSCC) has emerged as one of the most common malignancies in the head and neck (HN) sites. Around 123,000 new cases of oropharyngeal (OP) cancers are estimated to occur annually worldwide, resulting in 79,000 annual deaths (Parkin et al. 2001). In the United States, the incidence of OP cancers in 2008 is estimated to be 35,310 new cases, from which 7,590 deaths will occur (Jemal et al. 2008). The oropharynx, which comprises of the soft palate, uvula, tonsillar fossa and pillars, glossotonsillar sulci, lateral and posterior pharyngeal wall, vallecula, and base of tongue, harbors a rich lymphatic network. Therefore, tumors arising from this region are likely to have early nodal involvement and ~60% of these patients present with stage III–IV tumors at diagnosis (Greene et al. 2002). The treatment of OP cancers has evolved over time. Although either surgery or radiation therapy (RT) remains the main treatment modality for early-stage OP cancers, concurrent chemoradiation therapy (CRT) has largely replaced RT alone for locally advanced neoplasms. Recent advances in RT techniques and molecular technologies have ushered in a new age of novel therapy for OP cancers, which holds promise for a better outcome with potentially less normal tissue toxicity. In this chapter, we will focus on the new developments in epidemiology and treatment approaches for OPSCC.

2.2 Epidemiology

The most common histology for OP tumors is squamous cell carcinoma (SCC). Established risk factors for these tumors include tobacco exposure (either directly or indirectly), alcohol consumption, genetic and environmental factors such as diet, poor oral hygiene, and RT exposure (Rosenquist 2005). A synergism between smoking and alcohol abuse has been described and could increase the relative risk of these cancers as much as 30-fold (Castellsague et al. 2004). Marijuana consumption has also been linked to the development of OPSCC (Zhang et al. 1999).

While the overall incidence of other HNSCC has been declining since the early 1980s because of smoking cessation, the incidence of OPSCC has either been stable or rising, especially in younger populations (Ernster et al. 2007; Sturgis and Cinnciripini 2007) This is due to the increasing number of OPSCC associated with human papillomavirus (HPV). Reports indicated that up to 50–60% of OPSCC might harbor HPV DNA, depending on the detection method used (Gillison et al. 2000; Gillison and Shah 2001; Mork et al. 2001; Dai et al. 2004). HPV is most commonly found in tonsillar and base of tongue tumors, with HPV16 being found in the vast majority (>90%) (Gillison et al. 2000; Dahlgren et al. 2003). Evidence for the causal relationship between the presence of HPV and HNSCC incidence comes from prospective studies, indicating increased risk for developing HNSCC in patients who are seropositive for anti-HPV antibodies. In a large, nested case–control study from a Scandinavian cohort of almost 900,000 individuals, HPV-16 seropositivity was observed on the average of 9.4 years prior to the onset of disease and was associated with a 14-fold increased risk of OPSCC (Mork et al. 2001). Recent case–control studies suggest that HPV(+) and (−) tumors have distinct risk factor profile. While HPV(−) tumors had the traditional association with tobacco and alcohol use and poor oral hygiene, HPV(+) HNSCC was independently associated with marijuana exposure and several measures of sexual behavior (such as increasing numbers of lifetime vaginal or oral sex partners, casual sex participation, no barrier use during vaginal or oral sex, and history of a sexually transmitted disease) but not with tobacco or alcohol consumption (D’Souza et al. 2007; Gillison et al. 2008).

Some studies have suggested that HPV-related OPSCC not only represents a molecularly distinct disease but is also associated with a better prognosis (Gillison et al. 2000; Fakhry et al. 2008; Weinberger et al. 2006; Licitra et al. 2006). Figure 2.1 shows the disease-specific survival (DSS) curves for HPV(+) and (−) patients treated at our institution. A recent meta-analysis confirmed that HPV(+) OPSCC patients had a 28% lower risk of death than their negative counterparts (Ragin and Taioli 2007). The reason for this difference in prognosis is unclear but could be related to the distinct molecular and epidemiologic profiles of these tumors. HPV(+) tumors are more likely to be undifferentiated, have basaloid histology, and more frequent nodal metastasis (Fakhry and Gillison 2006). At the molecular level, they
are more likely to be p53 wildtype and p16INK4a-positive (Weinberger et al. 2006; Licitra et al. 2006; Fakhry and Gillison 2006). The intact apoptotic response to chemoradiation due to less p53 mutations and functional p16INK4a may explain the improved outcomes for HPV(+) tumors. Other hypotheses for improved outcomes include the lack of field cancerization and enhanced immune surveillance (Fakhry and Gillison 2006). Regardless of the underlying mechanism for improved outcome, such favorable prognosis would have significant implications for therapeutic management and posttreatment surveillance in patients with HPV(+) tumors.

2.3 Staging

Clinical staging is used for OPSCC. Evaluation is based on inspection/palpation of the tumor and neck nodes as well as nasopharyngoscopy. Radiologic assessment of the tumor should include at least a contrast enhanced computed tomography (CT) scan. Magnetic resonance imaging (MRI), which is often less sensitive to dental artefact than is CT, is useful for assessment of the base of tongue, pterygoid muscles, skull base, and mandibular bone marrow. Panendoscopy is routinely done to determine the tumor extent and to rule out a synchronous second primary cancer. The American Joint Committee on Cancer cancer staging system is used worldwide to stage OPSCC for prognosis and treatment recommendations (Greene et al. 2002).

2.3.1 The Role of 18Fluoro Deoxy-Glucose Positron Emission Topography in OPSCC Management

18Fluoro deoxy-glucose positron emission topography (FDG PET)/CT has become a widely used imaging modality for a variety of common malignancies, including OPSCC. The primary utility of FDG PET in OPSCC is for the detection of regional nodal and distant metastases. Several studies have established that FDG PET is superior to physical examination, and CT and MRI scans in determining the extent of involved nodes in patients with clinically enlarged nodes at diagnosis (Adams et al. 1998; Stuckensen et al. 2000; Quon et al. 2007; Branstetter et al. 2005). In general, PET does not play a significant role in the characterization of the primary tumor except for aiding in the detection of the primary tumor site in patients presenting with nodal metastases from an unknown primary site (Hanasono et al. 1999; Menda and Graham 2005). In patients with clinically negative nodal (N0) involvement by clinical examination and CT or MRI, the role of PET in guiding elective neck treatment is uncertain because of its limited resolution and its unacceptably low sensitivity in detecting occult nodal metastases (Hyde et al. 2003; Stoeckli et al. 2002; Schoder et al. 2006). In patients with more advanced tumors, PET is useful and superior to CT for detecting distant spread as well as synchronous tumors (Schwartz et al. 2003; Schmid et al. 2003; Wax et al. 2002). PET is also useful in determining response to chemotherapy and RT. However, several authors have described diminishing specificity in PET scans when performed within 3 months of RT (Andrade et al. 2006; Porceddu et al. 2005). Long-term surveillance may also be accomplished by FDG PET, where it has a higher sensitivity than CT alone.

Integrated FDG PET/CT imaging has provided a logical bridge between anatomical and functional imaging that appears ideally suited not only for
diagnostic purposes but also for radiotherapy (RT) planning. PET data can be imported into workstations specific to RT treatment planning. Further, immobilization devices can be used during the acquisition of PET/CT scan in a similar fashion as when performed on dedicated CT scanners and can improve the registration of PET and CT images. Figure 2.2 shows an example of a treatment planning PET-CT scan. Several reports have noted that target volumes may be modified in as many as 20% of cases when using FDG PET/CT vs. CT alone (Ciernik et al. 2003; Ahn and Garg 2008). The target volume may increase in some cases, where the viable tumor fraction is larger than previously noted or smaller, particularly in bulky tumors where the fraction of necrosis may be quite large. These changes in RT planning are in addition to the changes already brought on by the detection of unexpected metastatic disease using PET. Accordingly, PET/CT is commonly used as an adjunctive examination for radiation treatment planning for HN cancers at our institution. Preliminary outcome data from a series of 42 HNSCC patients suggested that the use of FDG PET for RT treatment planning resulted in a high level of disease control combined with favorable toxicity profiles (Vernon et al. 2008). A study from our institution with 82 HNSCC, of which 45 were from the oropharynx, indicated that high metabolic tumor burden as measured by total metabolic tumor volume (MTV, semi-automatically delineated on pretreatment PET scans using a custom software) or total tumor burden (defined as the product of MTV and median standard uptake value) is an adverse prognostic factor for disease recurrence and death in these patients (La et al. 2008) However, since there is still scant outcome data and nonstandardization of contouring methods, PET/CT is not recommended as a prime means of treatment planning, but as an adjunct to contrast enhanced CT and/or MRI.

2.4 Treatment by Stages

Treatment of OPSCC is complex and requires participation of a multidisciplinary team. The extent of the cancer, TNM stages, pathologic findings, and the overall condition of the patient dictate the appropriate therapeutic plan. The main treatment modalities for OPSCC are surgery, radiotherapy, and chemotherapy. More recently, biologically targeted therapy has also emerged as an effective therapy for OPSCC.

2.4.1 Early Stage (Stages I–II)

Either surgery or definitive RT can effectively manage stages I–II OPSCC. The choice of treatment is dictated by functional and cosmetic considerations and the medical team expertise. Several reports have compared the results of surgery and RT and none have found any difference in outcomes between the two modalities (Kramer et al. 1987; Mendenhall et al. 2000a, b). Traditional surgical treatment consists of a wide local excision, followed by a selective neck dissection. The GETTEC group showed that surgery alone yielded a 5-year locoregional control (LRC) rate of 89%, DSS of 100%, and overall survival (OS) of 73% in 53 T1–2 N0 OPSCC (Cosmidis et al. 2004). Similar results were achieved with definitive RT with a 5-year local control rate of 88% for T1 and 84% for T2 tonsillar carcinomas, and a 5-year DSS of 100% for stage I and 86% for stage...
II tumors (Mendenhall et al. 2006a). Analogous excellent results were also achieved with RT alone for early-stage base-of-tongue cancer with less functional morbidity (Mendenhall et al. 2006a).

Patients with T1–2N0 tonsillar carcinoma with minimal base of tongue and soft palate involvement can be safely irradiated to the tumor bed and ipsilateral neck alone, thereby sparing the contralateral neck and parotid gland. O’Sullivan et al. reported a 3-year LRC rate of 77% and a contralateral neck failure rate of only 3.5% in 228 tonsillar carcinoma patients treated with ipsilateral neck irradiation alone. Specifically there was no contralateral neck failure in 118 patients with T1–2N0 tumor in that series (O’Sullivan et al. 2001). In patients with base-of-tongue, vallecula, or soft palate tumors that require bilateral neck treatment, intensity-modulated radiotherapy (IMRT, discussed in details below) can provide favorable outcomes with less xerostomia. Garden et al. (2007) reported a 2-year LRC, recurrence-free, and OS rates of 94, 88, and 94%, respectively, for 51 patients receiving IMRT treatment for T1–2 OPSCC. More important, they were able to achieve a mean dose of <30 Gy to at least one parotid gland in 95% of their patients, thereby preserving some salivary function.

2.4.2 Locally Advanced Stage (Stages III–IV)

2.4.2.1 Surgery and Adjuvant Radiotherapy vs. Radiotherapy or Chemoradiotherapy

Stages III–IV OPSCC can be treated with either surgery and RT or concurrent chemoradiation therapy (CRT). RTOG 73-03 randomized 129 patients with oropharynx and oral cavity SCC to (1) preoperative RT (50 Gy) followed by surgery, (2) surgery followed by postoperative RT (60 Gy), or definitive RT alone (65–70 Gy). There was no significant difference in between the three arms in terms of LRC or OS; however, the study was significantly underpowered to address that question (Tupchong et al. 1991). More recently, SOO et al. reported on a phase III randomized study, comparing cisplatin and 5-fluorouracil (5-FU) based CRT vs. surgery and postoperative RT in 119 patients with locally advanced but resectable HNSCC, among whom 21% had OP primaries. The trial was closed prematurely before the targeted accrual of 200 patients because of poor enrolment. There was no significant difference in survival between the two groups and organ preservation was achieved in 55% of the OPSCC group (Soo et al. 2005).

2.4.2.2 Radiation Fractionation

For many years, RT alone was the main treatment modality for the majority of these patients, mainly for organ preservation. RT treatment intensification with altered fractionation such as accelerated fractionation or hyperfractionation has resulted in improved LRC and disease-free survival. EORTC 22791 randomized 325 patients with T2–3 N0–1 OPSCC to either conventional fractionation (70 Gy/35 fractions/7 weeks) or hyperfractionation (80.5 Gy twice daily [b.i.d] over 7 weeks) (Horiot et al. 1992). There was a significant improvement in 5-year LRC rate (40 vs. 60%, p = 0.02). Specifically, patients with T3 tumors had a trend for higher 5-year survival (30 vs. 40%, p = 0.08) if treated with hyperfractionation. RTOG 90-03 randomized 1,113 patients with locally advanced HNSCC, of whom 60% had OP primaries, to (1) standard fractionation (70 Gy/35 fractions/7 weeks), (2) hyperfractionation (81.6 Gy/68 fractions/7 weeks), (3) split-course accelerated fractionation (67.2 Gy/42 fractions/6 weeks), and (4) concomitant boost accelerated fractionation (72 Gy/42 fractions/6 weeks) (Fu et al. 2000). Patients treated with hyperfractionation or concomitant boost accelerated fractionation had significantly higher LRC than those treated with conventional fractionation; however, there was no difference in OS. Although most randomized studies did not find a survival advantage with altered fractionation, a meta-analysis using individual patient data found an absolute 5-year survival benefit of 3.4% (hazard ratio, 0.92; 95% CI, 0.86–0.97; p = 0.003), favoring altered fractionation, with the largest survival advantage noted for hyperfractionation (8% at 5 years) (Bourhis et al. 2006).

2.4.2.3 Chemotherapy and Radiation Therapy

Within the last decade, chemoradiation therapy (CRT) has become the main treatment for locally advanced OPSCC. GORTEC 94-01 randomized 226 patients with stages III–IV OPSCC to either conventional RT (70 Gy/7 weeks) or the same RT plus concurrent carboplatin and 5-FU chemotherapy. There was a significant improvement in LRC, disease-free, and overall survival, favoring the chemotheraphy arm (Calais et al. 1999). The 5-year OS,
disease-free survival (DFS), and LRC rates were 22 vs. 16% \((p = 0.05) \), 27 vs. 15% \((p = 0.01) \), and 48 vs. 25% \((p = 0.002) \) for CRT vs. RT arm, respectively \(\text{(Denis et al. 2004)} \). Several other randomized studies that included all HNSCC, of which a large proportion of patient had OP primaries, also found a survival advantage with the addition of concurrent chemotherapy \(\text{(Brizel et al. 1998; Adelstein et al. 2003; Jeremic et al. 1997; Budach et al. 2005)} \). A meta-analysis of 10,826 patients with individual data confirmed an absolute 8% survival benefit with the addition of concurrent chemotherapy, with the largest benefit noted for cisplatin-based chemotherapy \(\text{(Pignon et al. 2000)} \). These data established the role of CRT as the standard of care for locally advanced OPSCC.

As LRC improves with the addition of concurrent chemotherapy and more refined RT delivery techniques, a higher rate of distant metastasis has been observed in recent series \(\text{(Argiri et al. 2003)} \). This provides a rationale for re-investigating induction chemotherapy in these patients. Phase 2 studies have shown that the addition of a taxane to a cisplatin/5-FU (PF) platform yielded promising results in unresectable HNSCC \(\text{(Pignon et al. 2004)} \). Two large phase III studies in the USA and Europe, both included OPSCC patients and both using a taxane-platinum-5-FU (TPF) platform prior to definitive RT, reported positive survival results in comparison to induction PF. EORTC 24971/TAX 323 randomized 358 patients with unresectable pharyngeal cancer (46% OP) to either TPF or PF every 3 weeks for four cycles followed by RT alone in nonprogressing patients \(\text{(Vermorken et al. 2007)} \). The TPF group had a statistically superior progression-free and overall survival (11 vs. 8 months, 18.8 vs. 14.5 months). TAX 324 randomized 501 patients with HNSCC (52% OP) to three cycles of TPF or PF induction chemotherapy followed by CRT (weekly carboplatin) \(\text{(Posner et al. 2007)} \). The estimated 3-year OS was 62 vs. 48%, favoring the TPF group. Patterns of failure study showed superior LRC for the TPF arm without any improvement in distant metastases. TPF was also better tolerated than PF in both studies. However, between 10 & 15% of TAX 323 and 21 & 25% of TAX 324 patients never completed RT as specified in the protocols. Therefore, the role of TPF induction chemotherapy in addition to CRT needs to be further tested in randomized studies and this question is presently being addressed in two international randomized trials.

2.4.2.4 Targeted Therapy

The area of targeted therapy in HNSCC is rapidly growing. A correlative study of RTOG 90-03 showed that overexpression of the epidermal growth factor receptor (EGFR) was an independent predictor of poorer LCR and OS after conventionally fractionated RT \(\text{(Ang et al. 2002)} \). This preclinical data provided the rationale for a phase III randomized study, comparing RT alone to RT plus cetuximab, an anti-EGFR antibody in 424 patients with locally advanced HNSCC \(\text{(Bonner et al. 2006)} \). The addition of cetuximab to RT resulted in superior 2-year LCR \((50 \text{ vs. } 41\%, p = 0.005) \), progression-free survival \((46 \text{ vs. } 37\%, p = 0.006) \) and OS \((55 \text{ vs. } 45\%, p = 0.03) \). Subset analysis revealed that patients with OPSCC had the most survival benefit \(\text{(hazard ratio of 0.62) compared with other sites. Based on these positive findings and the fact that CRT is the currently most accepted treatment approach for patients with stage III–IV HNSCC, a large randomized study (RTOG 0522) has been mounted comparing cisplatin-based CRT alone to the same regimen with cetuximab. This study will address the role of adding cetuximab to standard CRT in HNSCC.}

2.4.2.5 Postoperative Treatment: Radiation and Chemoradiation

Well-accepted indications for postoperative radiation therapy (PORT) in patients with OPSCC include T3–4 tumor, multiple pathological nodal involvement \((\geq 2 \text{ nodes}) \), extracapsular nodal extension (ECE), involved surgical margins, perineural invasion, dermal involvement, and lymphovascular involvement \(\text{(Ang et al. 2001)} \). A small percentage of patients with clinical stage I–II and most patients with stage III–IV OPSCC will therefore require PORT for these high-risk features if they receive surgery as the initial treatment. It is strongly recommended that PORT be started within 3–6 weeks of surgery. Two large studies indicated that the package time, defined as the time from surgery to the date of PORT completion, should be kept as short as possible in patients with high-risk features \(\text{(Ang et al. 2001; Sanguineti et al. 2005)} \). The best LCR and survival was observed for patients with package time <11 weeks, intermediate for 11–13 weeks, and worst for >13 weeks \(\text{(Ang et al. 2001)} \).

A retrospective analysis of patients treated with PORT on 2 RTOG studies suggests that those who...
had one or more of the following features: (1) involved surgical margin, (2) ECE, or (3) ≥2 involved node, fared poorly despite appropriate PORT treatment (Al-Sarraf et al. 1998). A small randomized study from France showed that the addition of weekly cisplatin to PORT in patients with ECE resulted in improved disease-free and overall survival (Bachaud et al. 1996). This data prompted two large randomized studies from the USA (RTOG 95-01) and Europe (EORTC-22931), evaluating the role of cisplatin chemotherapy delivered concurrently with PORT in high-risk patients (Cooper et al. 2004; Bernier et al. 2004). Although the treatment regimens are identical in both studies, the eligibility criteria were different, resulting in different patient profiles. Both studies showed a significant improvement in LRC and DFS with the addition of cisplatin to PORT in high-risk patients. However, only EORTC found a significant improvement in OS. Pooled analysis of patients in both studies showed that the patients who benefited the most from PORT and chemotherapy were those with ECE and/or involved surgical margins (Bernier et al. 2005).

2.5 Radiation Therapy Technique: Three-Dimensional Conformal Radiation Therapy vs. Intensity-Modulated Radiotherapy

Intensity-modulated radiotherapy (IMRT) is a refinement of three-dimensional conformal radiation therapy. It utilizes a computerized treatment planning system along with sophisticated delivery machinery to tailor the radiation dose to the tumor target. By subdividing a broad radiation beam into smaller pencil beams and by varying the intensities of these pencil beams, a conformal dose distribution is generated. Tumor coverage is improved and more normal tissue sparing is achieved. Although LRC rates for OPSCC treated with non-IMRT techniques are excellent, both parotid glands are almost always included in the RT portal. As a result, patients suffer from permanent xerostomia, which has a negative impact on nutrition, dentition, communication, and emotional well-being. With parotid-sparing IMRT, patients’ quality of life has improved when compared with conventional RT (Lin et al. 2003). Chao et al. (2001) showed that IMRT significantly reduced the rate of G2–3 xerostomia when compared with conventional RT in patients treated either definitively or postoperatively for OPSCC. We also evaluated the role of IMRT in improving salivary function by administering a validated xerostomia questionnaire to 29 representative IMRT-treated patients and 75 matched conventionally treated patients at the same institution. We found that IMRT-treated patients had less xerostomia (lower score) with the largest difference noted for patients with oral cavity and OP cancers (Fig. 2.3) (Daly et al. 2007).

Dose sculpting and parotid sparing raise a general concern for possible tumor misses with IMRT. However, no clinical reports to date have shown any compromise in local control for OP cancers treated with IMRT. With a median follow-up of 32 months, Eisbruch et al. (2004) reported a 3-year LRC rate of 94% in 80 OP cancer patients. Over 90% of the patients had stage III or IV disease. Chao et al.

Fig. 2.3. Average xerostomia scores based on a validated xerostomia questionnaire in 29 representative IMRT-treated patients and 75 matched conventionally treated patients at the same institution. HP hypopharynx; LX larynx; OC oral cavity; OP oropharynx; UP unknown primary.
E. Filion and Q.-T. Le (2004) reported a local control rate of 87% using IMRT in 74 patients with OP cancer. In this report, 46% had T3/T4 tumors and 76% of the patients had stage III/IV disease. Other centers also reported excellent LRC rates. De Arruda et al. (2006) noted a 100% tumor control rate at a median follow-up of 24 months. An update with a median follow-up of 31 months continues to show excellent local control in this patient cohort (Lee et al. 2006). Table 2.1 shows a summary of IMRT results for OPSCC. A multi-institutional RTOG study, H-0022, using IMRT for early-stage OP cancer has completed accrual. The protocol tests the transportability of IMRT to multiple institutions. Preliminary results have been presented at an American Society of Therapeutic Radiation Oncology (ASTRO) meeting showing low IMRT violation rates and reduced xerostomia when compared with historical controls (Eisbruch et al. 2006). This protocol also provides useful dose constraint guidelines for target volume and organ (Table 2.2). Figure 2.4 shows an example of an IMRT plan for an OP cancer.

Table 2.1. Results of IMRT for oropharyngeal carcinomas

<table>
<thead>
<tr>
<th>References</th>
<th>N</th>
<th>Stage</th>
<th>Follow-up (months)</th>
<th>2-Year locoregional control (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao et al. (2003)</td>
<td>74</td>
<td>I–IV</td>
<td>33</td>
<td>87</td>
</tr>
<tr>
<td>Eisbruch et al. (2004)</td>
<td>80</td>
<td>I–IV</td>
<td>32</td>
<td>94</td>
</tr>
<tr>
<td>de Arruda et al. (2006)</td>
<td>50</td>
<td>I–IV</td>
<td>24</td>
<td>92</td>
</tr>
<tr>
<td>Hodge et al. (2007)</td>
<td>52</td>
<td>I–IV</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>Garden et al. (2007)</td>
<td>51</td>
<td>I–IV<sup>a</sup></td>
<td>45</td>
<td>93</td>
</tr>
</tbody>
</table>

^aPrimary tumor ≥ 4 cm in maximal dimension

Table 2.2. Dose constraint guidelines for target volume and organ at risk (Adapted and modified from RTOG protocols)

<table>
<thead>
<tr>
<th>Organ/volume</th>
<th>Constraints</th>
<th>Mean dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachial plexus</td>
<td>≥60 Gy to any point</td>
<td>NS</td>
</tr>
<tr>
<td>Brainstem</td>
<td><54 Gy</td>
<td>NS</td>
</tr>
<tr>
<td>Larynx</td>
<td>NS</td>
<td><45 Gy</td>
</tr>
<tr>
<td>Mandible</td>
<td><70 Gy if no possible then no more than 1 cm² to exceed 75 Gy</td>
<td>NS</td>
</tr>
<tr>
<td>Oral cavity</td>
<td>NS</td>
<td><40 Gy</td>
</tr>
<tr>
<td>Parotid</td>
<td>At least 20 cm³ of the combined volume of both parotid <20 Gy or at least 50% of the volume of one parotid <30 Gy ≥26 Gy (at least one gland)</td>
<td>≥26 Gy</td>
</tr>
<tr>
<td>Postcricoid pharynx</td>
<td>NS</td>
<td><45 Gy</td>
</tr>
<tr>
<td>Spinal cord</td>
<td><48 Gy to any volume larger than 0.03 cm³</td>
<td>NS</td>
</tr>
<tr>
<td>Unspecified tissue outside the target volume</td>
<td>≥5% can receive greater than the dose to CTV<sup>b</sup></td>
<td>NS</td>
</tr>
<tr>
<td>PTV<sup>b</sup></td>
<td>No more than 20% will receive > 100% of the prescribed dose</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>No more than 1% will receive < 93% of the prescribed dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No more than 1% or 1 cm³ of the tissue outside the PTV will receive > 110% of the prescribed dose</td>
<td></td>
</tr>
</tbody>
</table>

^aNS not specified
^bClinical target volume
^bPlanning target volume

2.6 Treatment-Related Toxicities

2.6.1 Acute Toxicities

The most common acute RT-related toxicities include dermatitis, taste impairment, pain, weight loss, and fatigue, with mucositis being perhaps the most debilitating side effect. The addition of concurrent chemotherapy has been shown to enhance mucositis (Calais et al. 1999). Care must be taken to minimize these incapacitating side effects. Smoking cessation is a must as studies have shown that cigarette smoking can increase the severity and the duration of the mucosal reactions and interfere with oncologic outcome if continued during RT (Browman et al. 1993). Clinical practice guidelines exist for the prevention and management of oral mucositis (Keefe et al. 2007). These include meticulous, systematic oral care hygiene with brushing, flossing, bland rinses and moisturizer, regular assessment of oral pain, early intervention with topical and systemic analgesics to promote oral comfort and involvement of a multidisciplinary team (nurses, physician, dentist, nutritionist).
Several agents have been shown to be promising in reducing mucositis in small phase II or observational studies, only to be negated in large randomized phase III trials. These include sucralfate (Dodd et al. 2003), antimicrobial lozenges (Trotti et al. 2004; El-Sayed et al. 2002), amifostine (Buentzel et al. 2006; Brizel et al. 2000), GMCSF (Ryu et al. 2007), pilocarpine (Scarantino et al. 2006; Warde et al. 2002) and aloe vera (Su et al. 2004). The use of zinc sulfate during RT may reduce severe mucositis as suggested by two small trials, but needs to be confirmed in a larger setting (Ertekin et al. 2004; Lin et al. 2006). A comprehensive review of the oral mucositis trials has been performed by the Cochrane Group (Worthington et al. 2007).

Recently, palifermin (@Kepivance), a recombinant human keratinocyte growth factor, has been shown to reduce the duration and severity of oral mucositis after intensive chemotherapy and RT in preparation for autologous hematopoietic stem cell transplantation in patients with hematologic malignancies (Spielberger et al. 2004). It has also been shown to reduce the incidence of WHO II or higher oral mucositis in patients with metastatic colorectal cancer treated with 5-FU-based chemotherapy in a small randomized study (Rosen et al. 2006). These results prompted a few randomized trials in HNSCC, two for patients receiving definitive CRT and one for patients receiving postoperative CRT for high-risk features. Two studies have been completed and one is still accruing patients. The results of these studies will define the role of palifermin in the management of oral mucositis in HNSCC.

2.6.2 Late Toxicities

Late toxicities, though less common, can be irreversible and unpredictable; therefore application of preventive measures and vigilant surveillance for these toxicities are critical. A higher incidence of aspiration has been noted with treatment intensification. Between a third to half of the patients treated for locally advanced OPSCC develop silent aspiration and up to a third have severe dysphagia after therapy (Nguyen et al. 2007, 2008). Swallowing therapy during and after treatment can be effective in minimizing dysphagia and reduce the need for tube feedings (Nguyen et al. 2007). Dose distribution studies have suggested a correlation between aspiration/dysphagia symptoms and RT dose to the pharyngeal constrictors and supraglottic larynx (Feng et al. 2007; Eisbruch et al. 2007). These observed dose–response relationships suggest that reducing the doses to these structures with either IMRT or brachytherapy may help to minimize the development of long-term dysphagia.

A common late toxicity is xerostomia due to RT damages to the salivary gland tissues. As indicated above, IMRT has been shown to be superior to conventional therapy in preserving salivary function in OPSCC patients without compromising tumor curability. Since parotid function has been shown to substantially decrease after a mean dose of >26 Gy, the recommendation is to limit the mean dose of one gland to <26 Gy for preservation of stimulated saliva (Eisbruch et al. 1999, 2003). As the submandibular glands are responsible for basal saliva secretion, there is increasing interest to also minimize the dose to these glands. Murdoch-Kinch et al. (2008) showed that above a mean dose of 39 Gy, there is no recovery in submandibular gland function, whereas recovery over time was noted when mean dose was kept below 39 Gy. These results have identified a threshold dose for submandibular glands; however, extreme caution must be exercised when sparing the submandibular gland to ensure no tumor misses due to the gland’s proximity to the level II nodes.

In addition to IMRT, the addition of intravenous amifostine to conventional RT has been shown to reduce acute side effects and xerostomia in a large randomized study of 315 HNSCC (Brizel et al. 2000). However, the inconvenient route of administration, high cost of the drug, and daily IV infusion procedure, as well as associated side effects of nausea/vomiting, have limited its use.

An emerging late RT complication is carotid stenosis from neck irradiation. In a study of 40 patients treated with unilateral neck irradiation, ultrasound and CT angiography revealed more carotid stenosis and more high-grade stenosis in the irradiated neck compared with the untreated neck, especially for doses ≥50 Gy (Martin et al. 2005). These findings were substantiated in another study, which found that neck dissection also contributed to the increased risk of carotid stenosis (Brown et al. 2005). Therefore, for long-term survivors after RT, especially for those who also had neck dissection, RT dose >50 Gy and/or symptomatic, ultrasonographic carotid artery screening should be considered.
Fig. 2.4. An example of an IMRT plan for a patient with a T1N2cM0 right base of tongue squamous cell carcinoma. The figure shows an axial, coronal, and sagittal view of the plan. Dose–volume histogram and dose statistics are also included.
Fig. 2.4. Continued.
2.7 Conclusion

OPSCC is a highly curable cancer. The therapeutic options are expanding as more is learned about the molecular profiles and prognosis. Although standard treatments of OPSCC still consist of traditional therapeutic approaches such as surgery, RT, and chemotherapy, molecularly targeted therapy is becoming prominent in their management. Major advances in radiation delivery also hold promises of decreasing late toxicity and improving quality of life in these patients. Since HPV-related OPSCC is emerging as a new entity with distinct pathogenesis, molecular profile, and highly favorable prognosis, it is now time to conduct separate clinical trials for these tumors to avoid overtreating many of these patients.

Abbreviations

AJCC American Joint Committee on Cancer
ASTRO American Society of Therapeutic Radiation Oncology
CRT Chemoradiation therapy
CT Computed tomography scan
DFS Disease-free survival
DSS Disease-specific survival
ECE Extracapsular nodal extension
EGFR Epidermal growth factor receptor
FDG PET Fluoro deoxy glucose positron emission tomography
HN Head and neck
HPV Human papillomavirus
IMRT Intensity modulated radiotherapy
LRC Locoregional control
MRI Magnetic resonance imaging
MTV Metabolic tumor volume
OP Oropharynx
OS Overall survival
OPSCC Oropharynx squamous cell carcinoma
PF Cisplatin/5-FU
PORT Postoperative radiation therapy
RT Radiation therapy
SCC Squamous cell carcinoma
SUV Standard uptake value
TPF Taxane-platinum-5-FU
WHO World health organization
3DCRT 3-Dimensional conformal radiation therapy
5-FU 5-Fluorouracil

References

Bernier J, Cooper JS, Pajak TF et al. (2005) Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 27:843–850
Branstetter BFt, Blodgett TM, Zimmer LA et al. (2005) Head and neck malignancy: is PET/CT more accurate than PET or CT alone? Radiology 235:580–586

Budach V, Stuschke M, Budach W et al. (2005) Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 23:1125–1135

Martin JD, Buckley AR, Graeb D et al. (2005) Carotid artery stenosis in asymptomatic patients who have received unilateral head-and-neck irradiation. Int J Radiat Oncol Biol Phys 63:1197–1205

Mendenhall WM, Stringer SP, Amdur RJ et al. (2000b) Is radiation therapy a preferred alternative to surgery for squamous cell carcinoma of the base of tongue? J Clin Oncol 18:35–42

